2015 |
Khosrowabadi, R; Quek, C; Ang, K K; Wahab, A; Chen, Annabel S -H Dynamic screening of autistic children in various mental states using pattern of connectivity between brain regions Journal Article Applied Soft Computing Journal, 32 , pp. 335-346, 2015, ISSN: 15684946, (cited By 6). Abstract | Links | BibTeX | Tags: Autism Spectrum Disorders, Biomedical Signal Processing, Brain, Connectivity Feature, Connectivity Pattern, Diseases, Electroencephalography, Face Perceptions, Feature Extraction, Functional Connectivity, Pattern Recognition, Pattern Recognition Techniques @article{Khosrowabadi2015335, title = {Dynamic screening of autistic children in various mental states using pattern of connectivity between brain regions}, author = {R Khosrowabadi and C Quek and K K Ang and A Wahab and S -H Annabel Chen}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927922520&doi=10.1016%2fj.asoc.2015.03.030&partnerID=40&md5=5973f80db5649e5c61e344907819a18b}, doi = {10.1016/j.asoc.2015.03.030}, issn = {15684946}, year = {2015}, date = {2015-01-01}, journal = {Applied Soft Computing Journal}, volume = {32}, pages = {335-346}, publisher = {Elsevier Ltd}, abstract = {In this study, a dynamic screening strategy is proposed to discriminate subjects with autistic spectrum disorder (ASD) from healthy controls. The ASD is defined as a neurodevelopmental disorder that disrupts normal patterns of connectivity between the brain regions. Therefore, the potential use of such abnormality for autism screening is investigated. The connectivity patterns are estimated from electroencephalogram (EEG) data collected from 8 brain regions under various mental states. The EEG data of 12 healthy controls and 6 autistic children (age matched in 7-10) were collected during eyes-open and eyes-close resting states as well as when subjects were exposed to affective faces (happy, sad and calm). Subsequently, the subjects were classified as autistic or healthy groups based on their brain connectivity patterns using pattern recognition techniques. Performance of the proposed system in each mental state is separately evaluated. The results present higher recognition rates using functional connectivity features when compared against other existing feature extraction methods. © 2015 Published by Elsevier B.V.}, note = {cited By 6}, keywords = {Autism Spectrum Disorders, Biomedical Signal Processing, Brain, Connectivity Feature, Connectivity Pattern, Diseases, Electroencephalography, Face Perceptions, Feature Extraction, Functional Connectivity, Pattern Recognition, Pattern Recognition Techniques}, pubstate = {published}, tppubtype = {article} } In this study, a dynamic screening strategy is proposed to discriminate subjects with autistic spectrum disorder (ASD) from healthy controls. The ASD is defined as a neurodevelopmental disorder that disrupts normal patterns of connectivity between the brain regions. Therefore, the potential use of such abnormality for autism screening is investigated. The connectivity patterns are estimated from electroencephalogram (EEG) data collected from 8 brain regions under various mental states. The EEG data of 12 healthy controls and 6 autistic children (age matched in 7-10) were collected during eyes-open and eyes-close resting states as well as when subjects were exposed to affective faces (happy, sad and calm). Subsequently, the subjects were classified as autistic or healthy groups based on their brain connectivity patterns using pattern recognition techniques. Performance of the proposed system in each mental state is separately evaluated. The results present higher recognition rates using functional connectivity features when compared against other existing feature extraction methods. © 2015 Published by Elsevier B.V. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2015 |
Dynamic screening of autistic children in various mental states using pattern of connectivity between brain regions Journal Article Applied Soft Computing Journal, 32 , pp. 335-346, 2015, ISSN: 15684946, (cited By 6). |