2014 |
Bhat, S; Acharya, U R; Adeli, H; Bairy, G M; Adeli, A Automated diagnosis of autism: In search of a mathematical marker Journal Article Reviews in the Neurosciences, 25 (6), pp. 851-861, 2014, ISSN: 03341763, (cited By 34). Abstract | Links | BibTeX | Tags: Algorithms, Article, Autism, Autism Spectrum Disorders, Automation, Biological Model, Brain, Chaos Theory, Correlation Analysis, Detrended Fluctuation Analysis, Disease Marker, Electrode, Electroencephalogram, Electroencephalography, Entropy, Fourier Transformation, Fractal Analysis, Frequency Domain Analysis, Human, Mathematical Analysis, Mathematical Marker, Mathematical Parameters, Models, Neurologic Disease, Neurological, Nonlinear Dynamics, Nonlinear System, Pathophysiology, Priority Journal, Procedures, Signal Processing, Statistical Model, Time, Time Frequency Analysis, Wavelet Analysis @article{Bhat2014851, title = {Automated diagnosis of autism: In search of a mathematical marker}, author = {S Bhat and U R Acharya and H Adeli and G M Bairy and A Adeli}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925286949&doi=10.1515%2frevneuro-2014-0036&partnerID=40&md5=04858a5c9860e9027e3113835ca2e11f}, doi = {10.1515/revneuro-2014-0036}, issn = {03341763}, year = {2014}, date = {2014-01-01}, journal = {Reviews in the Neurosciences}, volume = {25}, number = {6}, pages = {851-861}, publisher = {Walter de Gruyter GmbH}, abstract = {Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (EEG). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-theart review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEGbased diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder. © 2014 Walter de Gruyter GmbH.}, note = {cited By 34}, keywords = {Algorithms, Article, Autism, Autism Spectrum Disorders, Automation, Biological Model, Brain, Chaos Theory, Correlation Analysis, Detrended Fluctuation Analysis, Disease Marker, Electrode, Electroencephalogram, Electroencephalography, Entropy, Fourier Transformation, Fractal Analysis, Frequency Domain Analysis, Human, Mathematical Analysis, Mathematical Marker, Mathematical Parameters, Models, Neurologic Disease, Neurological, Nonlinear Dynamics, Nonlinear System, Pathophysiology, Priority Journal, Procedures, Signal Processing, Statistical Model, Time, Time Frequency Analysis, Wavelet Analysis}, pubstate = {published}, tppubtype = {article} } Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (EEG). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-theart review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEGbased diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder. © 2014 Walter de Gruyter GmbH. |
2011 |
Shams, Khazaal W; Rahman, Abdul A W Characterizing autistic disorder based on principle component analysis Conference 2011, ISBN: 9781457714184, (cited By 6). Abstract | Links | BibTeX | Tags: Autism, Brain Function, Brain Signals, Classification Process, Data Dimensions, Diseases, Electroencephalogram Signals, Electroencephalography, Frequency Domain Analysis, Industrial Electronics, Motor Movements, Motor Tasks, PCA, Principal Component Analysis, Signal Detection, Time Frequency Domain @conference{KhazaalShams2011653, title = {Characterizing autistic disorder based on principle component analysis}, author = {W Khazaal Shams and A W Abdul Rahman}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855644760&doi=10.1109%2fISIEA.2011.6108797&partnerID=40&md5=c486566e2d7ff404d830704c0b404067}, doi = {10.1109/ISIEA.2011.6108797}, isbn = {9781457714184}, year = {2011}, date = {2011-01-01}, journal = {2011 IEEE Symposium on Industrial Electronics and Applications, ISIEA 2011}, pages = {653-657}, abstract = {Autism is often diagnosed during preschool or toddled age. This diagnosis often depends on behavioral test. It is known that individuals with autism have abnormal brain signals different from typical persons yet this difference in signals is slight that it is often difficult to distinguish from the normal. However, Electroencephalogram (EEG) signals have a lot of information which reflect the behavior of brain functions which therefore captures the marker for autism, help to early diagnose and speed the treatment. This work investigates and compares classification process for autism in open-eyed tasks and motor movement by using Principle Component Analysis (PCA) for feature extracted in Time-frequency domain to reduce data dimension. The results show that the proposed method gives accuracy in the range 90-100% for autism and normal children in motor task and around 90% to detect normal in open-eyed tasks though difficult to detect autism in this task. © 2011 IEEE.}, note = {cited By 6}, keywords = {Autism, Brain Function, Brain Signals, Classification Process, Data Dimensions, Diseases, Electroencephalogram Signals, Electroencephalography, Frequency Domain Analysis, Industrial Electronics, Motor Movements, Motor Tasks, PCA, Principal Component Analysis, Signal Detection, Time Frequency Domain}, pubstate = {published}, tppubtype = {conference} } Autism is often diagnosed during preschool or toddled age. This diagnosis often depends on behavioral test. It is known that individuals with autism have abnormal brain signals different from typical persons yet this difference in signals is slight that it is often difficult to distinguish from the normal. However, Electroencephalogram (EEG) signals have a lot of information which reflect the behavior of brain functions which therefore captures the marker for autism, help to early diagnose and speed the treatment. This work investigates and compares classification process for autism in open-eyed tasks and motor movement by using Principle Component Analysis (PCA) for feature extracted in Time-frequency domain to reduce data dimension. The results show that the proposed method gives accuracy in the range 90-100% for autism and normal children in motor task and around 90% to detect normal in open-eyed tasks though difficult to detect autism in this task. © 2011 IEEE. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2014 |
Automated diagnosis of autism: In search of a mathematical marker Journal Article Reviews in the Neurosciences, 25 (6), pp. 851-861, 2014, ISSN: 03341763, (cited By 34). |
2011 |
Characterizing autistic disorder based on principle component analysis Conference 2011, ISBN: 9781457714184, (cited By 6). |