List of Publications
There are numbers of autism related research can be found in Malaysia that generally focus on the ASD, learning disorder, communication aids, therapy and many more. The list of publications is provided below:
- Click this to search using keyword determined by the user.
- It will lead to a new web page with a text search box.
- Type your keyword in the search box
- Click on Keyword to search for any publication. Bigger words indicate the most used tags and smaller words indicate the least used.
- Click on dropdown buttons to choose any years, types of publications or authors of your choice.
- Click on underlined words in the publication detail to view more information.
2020 |
Liang, S; Loo, C K; Sabri, Md A Q Autism Spectrum Disorder Classification in Videos: A Hybrid of Temporal Coherency Deep Networks and Self-organizing Dual Memory Approach Journal Article Lecture Notes in Electrical Engineering, 621 , pp. 421-430, 2020, ISSN: 18761100, (cited By 0). Abstract | Links | BibTeX | Tags: Artificial Intelligence, Autism Spectrum Disorders, Autistic Children, Catastrophic Forgetting, Children with Autism, Diagnosis, Diseases, E-learning, Hybrid Approach, Learning, Neural Networks, Primary Objective, Scalable Systems, Temporal Coherency, Unsupervised Online Learning @article{Liang2020421, title = {Autism Spectrum Disorder Classification in Videos: A Hybrid of Temporal Coherency Deep Networks and Self-organizing Dual Memory Approach}, author = {S Liang and C K Loo and A Q Md Sabri}, editor = {Kim H -Y Kim K.J.}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077496650&doi=10.1007%2f978-981-15-1465-4_42&partnerID=40&md5=8d885d212faf9e5a9d686c58a2e4eecd}, doi = {10.1007/978-981-15-1465-4_42}, issn = {18761100}, year = {2020}, date = {2020-01-01}, journal = {Lecture Notes in Electrical Engineering}, volume = {621}, pages = {421-430}, publisher = {Springer}, abstract = {Autism is at the moment, a common disorder. Prevalence of Autism Spectrum Disorder (ASD) is reported to be 1 in every 88 individuals. Early diagnosis of ASD has a significant impact to the livelihood of autistic children and their parents, or their caregivers. In this paper, we have developed an unsupervised online learning model for ASD classification. The proposed approach is a hybrid approach, consisting, the temporal coherency deep networks approach, and, the self-organizing dual memory approach. The primary objective of the research is, to have a scalable system that can achieve online learning, and, is able to avoid the catastrophic forgetting phenomena in neural networks. We have evaluated our approach using an ASD specific dataset, and obtained promising results that are well inclined in supporting the overall objective of the research. © Springer Nature Singapore Pte Ltd 2020.}, note = {cited By 0}, keywords = {Artificial Intelligence, Autism Spectrum Disorders, Autistic Children, Catastrophic Forgetting, Children with Autism, Diagnosis, Diseases, E-learning, Hybrid Approach, Learning, Neural Networks, Primary Objective, Scalable Systems, Temporal Coherency, Unsupervised Online Learning}, pubstate = {published}, tppubtype = {article} } Autism is at the moment, a common disorder. Prevalence of Autism Spectrum Disorder (ASD) is reported to be 1 in every 88 individuals. Early diagnosis of ASD has a significant impact to the livelihood of autistic children and their parents, or their caregivers. In this paper, we have developed an unsupervised online learning model for ASD classification. The proposed approach is a hybrid approach, consisting, the temporal coherency deep networks approach, and, the self-organizing dual memory approach. The primary objective of the research is, to have a scalable system that can achieve online learning, and, is able to avoid the catastrophic forgetting phenomena in neural networks. We have evaluated our approach using an ASD specific dataset, and obtained promising results that are well inclined in supporting the overall objective of the research. © Springer Nature Singapore Pte Ltd 2020. |
2019 |
Hasan, C Z C; Jailani, R; Tahir, N M 2018-October , Institute of Electrical and Electronics Engineers Inc., 2019, ISSN: 21593442, (cited By 0). Abstract | Links | BibTeX | Tags: 10 Fold Cross Validation, 3D Modeling, Autism Spectrum Disorders, Biophysics, Clinical Decision Making, Computer Aided Diagnosis, Decision Making, Discriminant Analysis, Diseases, Gait Analysis, Gait Classification, Ground Reaction Forces, Neural Networks, Parameterization Techniques, Pattern Recognition, Petroleum Reservoir Evaluation, Program Diagnostics, Support Vector Machines, Targeted Treatment, Three-Dimensional @conference{Hasan20192436, title = {ANN and SVM Classifiers in Identifying Autism Spectrum Disorder Gait Based on Three-Dimensional Ground Reaction Forces}, author = {C Z C Hasan and R Jailani and N M Tahir}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063202256&doi=10.1109%2fTENCON.2018.8650468&partnerID=40&md5=c697d0c43ebd77d76d74cb3726872f42}, doi = {10.1109/TENCON.2018.8650468}, issn = {21593442}, year = {2019}, date = {2019-01-01}, journal = {IEEE Region 10 Annual International Conference, Proceedings/TENCON}, volume = {2018-October}, pages = {2436-2440}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {Autism spectrum disorder (ASD) is a complex and lifelong neurodevelopmental condition that occurs in early childhood and is associated with unusual movement and gait disturbances. An automated and accurate recognition of ASD gait provides assistance in diagnosis and clinical decision-making as well as improving targeted treatment. This paper explores the use of two well-known machine learning classifiers, artificial neural network (ANN) and support vector machine (SVM) in distinguishing ASD and normal gait patterns based on prominent gait features derived from three-dimensional (3D) ground reaction forces (GRFs) data. The 3D GRFs data of 30 children with ASD and 30 typically developing children were obtained using two force plates during self-determined speed of barefoot walking. Time-series parameterization techniques were applied to the 3D GRFs waveforms to extract the significant gait features. The stepwise method of discriminant analysis (SWDA) was employed to determine the dominant GRF gait features in order to classify ASD and typically developing groups. The 10-fold cross-validation test results indicate that the ANN model with three dominant GRF input features outperformed the kernel-based SVM models with 93.3% accuracy, 96.7% sensitivity, and 90.0% specificity. The findings of this study demonstrate the reliability of using the 3D GRF input features, in combination with SWDA feature selection and ANN classification model as an appropriate method that may be beneficial for the diagnosis of ASD gait as well as for evaluation purpose of the treatment programs. © 2018 IEEE.}, note = {cited By 0}, keywords = {10 Fold Cross Validation, 3D Modeling, Autism Spectrum Disorders, Biophysics, Clinical Decision Making, Computer Aided Diagnosis, Decision Making, Discriminant Analysis, Diseases, Gait Analysis, Gait Classification, Ground Reaction Forces, Neural Networks, Parameterization Techniques, Pattern Recognition, Petroleum Reservoir Evaluation, Program Diagnostics, Support Vector Machines, Targeted Treatment, Three-Dimensional}, pubstate = {published}, tppubtype = {conference} } Autism spectrum disorder (ASD) is a complex and lifelong neurodevelopmental condition that occurs in early childhood and is associated with unusual movement and gait disturbances. An automated and accurate recognition of ASD gait provides assistance in diagnosis and clinical decision-making as well as improving targeted treatment. This paper explores the use of two well-known machine learning classifiers, artificial neural network (ANN) and support vector machine (SVM) in distinguishing ASD and normal gait patterns based on prominent gait features derived from three-dimensional (3D) ground reaction forces (GRFs) data. The 3D GRFs data of 30 children with ASD and 30 typically developing children were obtained using two force plates during self-determined speed of barefoot walking. Time-series parameterization techniques were applied to the 3D GRFs waveforms to extract the significant gait features. The stepwise method of discriminant analysis (SWDA) was employed to determine the dominant GRF gait features in order to classify ASD and typically developing groups. The 10-fold cross-validation test results indicate that the ANN model with three dominant GRF input features outperformed the kernel-based SVM models with 93.3% accuracy, 96.7% sensitivity, and 90.0% specificity. The findings of this study demonstrate the reliability of using the 3D GRF input features, in combination with SWDA feature selection and ANN classification model as an appropriate method that may be beneficial for the diagnosis of ASD gait as well as for evaluation purpose of the treatment programs. © 2018 IEEE. |
2018 |
Sudirman, R; Hussin, S S; Airij, A G; Hai, C Z Profile indicator for autistic children using EEG biosignal potential of sensory tasks Conference Institute of Electrical and Electronics Engineers Inc., 2018, ISBN: 9781538612774, (cited By 0). Abstract | Links | BibTeX | Tags: Autistic Children, Biomedical Signal Processing, Brain, Children with Autism, Electroencephalography, Electrophysiology, Entropy Approximations, Independent Component Analysis, MATLAB, Neural Networks, Neurological Problems, Sensory Analysis, Sensory Profiles, Sensory Stimulation, Wavelet Packet Transforms @conference{Sudirman2018136, title = {Profile indicator for autistic children using EEG biosignal potential of sensory tasks}, author = {R Sudirman and S S Hussin and A G Airij and C Z Hai}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058032461&doi=10.1109%2fICBAPS.2018.8527403&partnerID=40&md5=30dbb1596f4a0529332713c087bd788d}, doi = {10.1109/ICBAPS.2018.8527403}, isbn = {9781538612774}, year = {2018}, date = {2018-01-01}, journal = {2nd International Conference on BioSignal Analysis, Processing and Systems, ICBAPS 2018}, pages = {136-141}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {Electroencephalography (EEG) is a measure of voltages caused due to neural activities within the brain. EEG is a recommended tool for diagnosing neurological problems because it is non-invasive and can be recorded over a longer time-period. The children with Autism Spectrum Disorder (ASD) have difficulty in expressing their emotions due to their inability of proper information processing in brain. Therefore, this research aims to build a sensory profile with the help of EEG biosignal potential to distinguish among different sensory responses. The EEG signals acquired in this research identify different emotional states such as positive-thinking or super-learning and light-relaxation and are within the frequency range of 8-12 Hertz. 64 children participated in this research among which 34 were children with ASD and 30 were normal children. The EEG data was recoded while all the children were provided with vestibular, visual, sound, taste and vestibular sensory stimulations. The raw EEG data was filtered with the help of independent component analysis (ICA) using wavelet transform and EEGLAB software. Later, for building the sensory profile, entropy approximation, means and standard deviations were extracted from the filtered EEG signals. Along with that, the filtered EEG data was also fed to a neural networks (NN) algorithm which was implemented in MATLAB. Results from the acquired EEG signals depicted that during the sensory stimulation phase, the responses of all autistic children were in an unstable state. These findings will equip and aid their learning strategy in the future. © 2018 IEEE.}, note = {cited By 0}, keywords = {Autistic Children, Biomedical Signal Processing, Brain, Children with Autism, Electroencephalography, Electrophysiology, Entropy Approximations, Independent Component Analysis, MATLAB, Neural Networks, Neurological Problems, Sensory Analysis, Sensory Profiles, Sensory Stimulation, Wavelet Packet Transforms}, pubstate = {published}, tppubtype = {conference} } Electroencephalography (EEG) is a measure of voltages caused due to neural activities within the brain. EEG is a recommended tool for diagnosing neurological problems because it is non-invasive and can be recorded over a longer time-period. The children with Autism Spectrum Disorder (ASD) have difficulty in expressing their emotions due to their inability of proper information processing in brain. Therefore, this research aims to build a sensory profile with the help of EEG biosignal potential to distinguish among different sensory responses. The EEG signals acquired in this research identify different emotional states such as positive-thinking or super-learning and light-relaxation and are within the frequency range of 8-12 Hertz. 64 children participated in this research among which 34 were children with ASD and 30 were normal children. The EEG data was recoded while all the children were provided with vestibular, visual, sound, taste and vestibular sensory stimulations. The raw EEG data was filtered with the help of independent component analysis (ICA) using wavelet transform and EEGLAB software. Later, for building the sensory profile, entropy approximation, means and standard deviations were extracted from the filtered EEG signals. Along with that, the filtered EEG data was also fed to a neural networks (NN) algorithm which was implemented in MATLAB. Results from the acquired EEG signals depicted that during the sensory stimulation phase, the responses of all autistic children were in an unstable state. These findings will equip and aid their learning strategy in the future. © 2018 IEEE. |
Hariharan, M; Sindhu, R; Vijean, V; Yazid, H; Nadarajaw, T; Yaacob, S; Polat, K Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Journal Article Computer Methods and Programs in Biomedicine, 155 , pp. 39-51, 2018, ISSN: 01692607, (cited By 21). Abstract | Links | BibTeX | Tags: Accidents, Algorithms, Article, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Classification (of information), Classification Algorithm, Classifier, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Extraction, Extreme Learning Machine, Factual, Factual Database, Feature Extraction, Feature Selection Methods, Fuzzy System, Hearing Impairment, Human, Hunger, Infant, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Learning, Linear Predictive Coding, Machine Learning, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Mel Frequency Cepstral Coefficients, Multi-Class Classification, Neural Networks, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Pathophysiology, Prematurity, Reproducibility, Reproducibility of Results, Signal Processing, Speech Recognition, Wavelet Analysis, Wavelet Packet, Wavelet Packet Transforms @article{Hariharan201839, title = {Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification}, author = {M Hariharan and R Sindhu and V Vijean and H Yazid and T Nadarajaw and S Yaacob and K Polat}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036611215&doi=10.1016%2fj.cmpb.2017.11.021&partnerID=40&md5=1f3b17817b00f07cadad6eb61c0f4bf9}, doi = {10.1016/j.cmpb.2017.11.021}, issn = {01692607}, year = {2018}, date = {2018-01-01}, journal = {Computer Methods and Programs in Biomedicine}, volume = {155}, pages = {39-51}, publisher = {Elsevier Ireland Ltd}, abstract = {Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V.}, note = {cited By 21}, keywords = {Accidents, Algorithms, Article, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Classification (of information), Classification Algorithm, Classifier, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Extraction, Extreme Learning Machine, Factual, Factual Database, Feature Extraction, Feature Selection Methods, Fuzzy System, Hearing Impairment, Human, Hunger, Infant, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Learning, Linear Predictive Coding, Machine Learning, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Mel Frequency Cepstral Coefficients, Multi-Class Classification, Neural Networks, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Pathophysiology, Prematurity, Reproducibility, Reproducibility of Results, Signal Processing, Speech Recognition, Wavelet Analysis, Wavelet Packet, Wavelet Packet Transforms}, pubstate = {published}, tppubtype = {article} } Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V. |
2017 |
Ilias, S; Tahir, N M; Jailani, R; Hasan, C Z C Linear Discriminant Analysis in Classifying Walking Gait of Autistic Children Conference Institute of Electrical and Electronics Engineers Inc., 2017, ISBN: 9781538614099, (cited By 0). Abstract | Links | BibTeX | Tags: Autism, Autistic Children, Children with Autism, Discriminant Analysis, Diseases, Extraction, Feature Extraction, Gait Analysis, Gait Classification, Kinematics, Linear Discriminant Analysis, Motion Analysis System, Neural Networks, Principal Component Analysis, Three-Dimensional @conference{Ilias201767, title = {Linear Discriminant Analysis in Classifying Walking Gait of Autistic Children}, author = {S Ilias and N M Tahir and R Jailani and C Z C Hasan}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048377850&doi=10.1109%2fEMS.2017.22&partnerID=40&md5=06de53be2b4f3976ddcc420067ab6e44}, doi = {10.1109/EMS.2017.22}, isbn = {9781538614099}, year = {2017}, date = {2017-01-01}, journal = {Proceedings - UKSim-AMSS 11th European Modelling Symposium on Computer Modelling and Simulation, EMS 2017}, pages = {67-72}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {The aim of this research is to investigate the effectiveness between Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) along with neural network (NN) in classifying the gait of autistic children as compared to control group. Twelve autistic children and thirty two normal children participated in this study. Firstly the walking gait of these two groups are acquired using VICON Motion Analysis System to extract the three dimensional (3D) gait features that comprised of 21 gait features namely five features from basic temporal spatial, five features represented the kinetic parameters and twelve features from kinematic. Further, PCA and LDA are utilized as feature extraction in determining the significant features among these gait features. With NN as classifier, results showed that LDA as feature extraction outperform PCA for classification of autism versus normal children namely kinematic gait patterns attained 98.44% accuracy followed by basic temporal spatial gait features with accuracy of 87.5%. © 2017 IEEE.}, note = {cited By 0}, keywords = {Autism, Autistic Children, Children with Autism, Discriminant Analysis, Diseases, Extraction, Feature Extraction, Gait Analysis, Gait Classification, Kinematics, Linear Discriminant Analysis, Motion Analysis System, Neural Networks, Principal Component Analysis, Three-Dimensional}, pubstate = {published}, tppubtype = {conference} } The aim of this research is to investigate the effectiveness between Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) along with neural network (NN) in classifying the gait of autistic children as compared to control group. Twelve autistic children and thirty two normal children participated in this study. Firstly the walking gait of these two groups are acquired using VICON Motion Analysis System to extract the three dimensional (3D) gait features that comprised of 21 gait features namely five features from basic temporal spatial, five features represented the kinetic parameters and twelve features from kinematic. Further, PCA and LDA are utilized as feature extraction in determining the significant features among these gait features. With NN as classifier, results showed that LDA as feature extraction outperform PCA for classification of autism versus normal children namely kinematic gait patterns attained 98.44% accuracy followed by basic temporal spatial gait features with accuracy of 87.5%. © 2017 IEEE. |
2016 |
Ilias, S; Tahir, N M; Jailani, R; Hasan, C Z C Classification of autism children gait patterns using Neural Network and Support Vector Machine Conference Institute of Electrical and Electronics Engineers Inc., 2016, ISBN: 9781509015436, (cited By 5). Abstract | Links | BibTeX | Tags: Accuracy Rate, Autism, Classification (of information), Diseases, Gait Analysis, Gait Parameters, Gait Pattern, Industrial Electronics, Kinematics, Neural Networks, NN Classifiers, Sensitivity and Specificity, Support Vector Machines, Three Categories @conference{Ilias201652, title = {Classification of autism children gait patterns using Neural Network and Support Vector Machine}, author = {S Ilias and N M Tahir and R Jailani and C Z C Hasan}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992135613&doi=10.1109%2fISCAIE.2016.7575036&partnerID=40&md5=55c6d166768ed5fa3b504a2bd3441829}, doi = {10.1109/ISCAIE.2016.7575036}, isbn = {9781509015436}, year = {2016}, date = {2016-01-01}, journal = {ISCAIE 2016 - 2016 IEEE Symposium on Computer Applications and Industrial Electronics}, pages = {52-56}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {In this study, we deemed further to evaluate the performance of Neural Network (NN) and Support Vector Machine (SVM) in classifying the gait patterns between autism and normal children. Firstly, temporal spatial, kinetic and kinematic gait parameters of forty four subjects namely thirty two normal subjects and twelve autism children are acquired. Next, these three category gait parameters acted as inputs to both classifiers. Results showed that fusion of temporal spatial and kinematic contributed the highest accuracy rate for NN classifier specifically 95% whilst SVM with polynomial as kernel, 95% accuracy rate is contributed by fusion of all gait parameters as inputs to the classifier. In addition, the classifiers performance is validated by computing both value of sensitivity and specificity. With SVM using polynomial as kernel, sensitivity attained is 100% indicated that the classifier's ability to perfectly discriminate normal subjects from autism subjects whilst 85% specificity showed that SVM is able to identify autism subjects as autism based on their gait patterns at 85% rate. © 2016 IEEE.}, note = {cited By 5}, keywords = {Accuracy Rate, Autism, Classification (of information), Diseases, Gait Analysis, Gait Parameters, Gait Pattern, Industrial Electronics, Kinematics, Neural Networks, NN Classifiers, Sensitivity and Specificity, Support Vector Machines, Three Categories}, pubstate = {published}, tppubtype = {conference} } In this study, we deemed further to evaluate the performance of Neural Network (NN) and Support Vector Machine (SVM) in classifying the gait patterns between autism and normal children. Firstly, temporal spatial, kinetic and kinematic gait parameters of forty four subjects namely thirty two normal subjects and twelve autism children are acquired. Next, these three category gait parameters acted as inputs to both classifiers. Results showed that fusion of temporal spatial and kinematic contributed the highest accuracy rate for NN classifier specifically 95% whilst SVM with polynomial as kernel, 95% accuracy rate is contributed by fusion of all gait parameters as inputs to the classifier. In addition, the classifiers performance is validated by computing both value of sensitivity and specificity. With SVM using polynomial as kernel, sensitivity attained is 100% indicated that the classifier's ability to perfectly discriminate normal subjects from autism subjects whilst 85% specificity showed that SVM is able to identify autism subjects as autism based on their gait patterns at 85% rate. © 2016 IEEE. |