2018 |
Hariharan, M; Sindhu, R; Vijean, V; Yazid, H; Nadarajaw, T; Yaacob, S; Polat, K Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Journal Article Computer Methods and Programs in Biomedicine, 155 , pp. 39-51, 2018, ISSN: 01692607, (cited By 21). Abstract | Links | BibTeX | Tags: Accidents, Algorithms, Article, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Classification (of information), Classification Algorithm, Classifier, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Extraction, Extreme Learning Machine, Factual, Factual Database, Feature Extraction, Feature Selection Methods, Fuzzy System, Hearing Impairment, Human, Hunger, Infant, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Learning, Linear Predictive Coding, Machine Learning, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Mel Frequency Cepstral Coefficients, Multi-Class Classification, Neural Networks, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Pathophysiology, Prematurity, Reproducibility, Reproducibility of Results, Signal Processing, Speech Recognition, Wavelet Analysis, Wavelet Packet, Wavelet Packet Transforms @article{Hariharan201839, title = {Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification}, author = {M Hariharan and R Sindhu and V Vijean and H Yazid and T Nadarajaw and S Yaacob and K Polat}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036611215&doi=10.1016%2fj.cmpb.2017.11.021&partnerID=40&md5=1f3b17817b00f07cadad6eb61c0f4bf9}, doi = {10.1016/j.cmpb.2017.11.021}, issn = {01692607}, year = {2018}, date = {2018-01-01}, journal = {Computer Methods and Programs in Biomedicine}, volume = {155}, pages = {39-51}, publisher = {Elsevier Ireland Ltd}, abstract = {Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V.}, note = {cited By 21}, keywords = {Accidents, Algorithms, Article, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Classification (of information), Classification Algorithm, Classifier, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Extraction, Extreme Learning Machine, Factual, Factual Database, Feature Extraction, Feature Selection Methods, Fuzzy System, Hearing Impairment, Human, Hunger, Infant, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Learning, Linear Predictive Coding, Machine Learning, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Mel Frequency Cepstral Coefficients, Multi-Class Classification, Neural Networks, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Pathophysiology, Prematurity, Reproducibility, Reproducibility of Results, Signal Processing, Speech Recognition, Wavelet Analysis, Wavelet Packet, Wavelet Packet Transforms}, pubstate = {published}, tppubtype = {article} } Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V. |
Sudirman, R; Hussin, S S; Airij, A G; Hai, C Z Profile indicator for autistic children using EEG biosignal potential of sensory tasks Conference Institute of Electrical and Electronics Engineers Inc., 2018, ISBN: 9781538612774, (cited By 0). Abstract | Links | BibTeX | Tags: Autistic Children, Biomedical Signal Processing, Brain, Children with Autism, Electroencephalography, Electrophysiology, Entropy Approximations, Independent Component Analysis, MATLAB, Neural Networks, Neurological Problems, Sensory Analysis, Sensory Profiles, Sensory Stimulation, Wavelet Packet Transforms @conference{Sudirman2018136, title = {Profile indicator for autistic children using EEG biosignal potential of sensory tasks}, author = {R Sudirman and S S Hussin and A G Airij and C Z Hai}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058032461&doi=10.1109%2fICBAPS.2018.8527403&partnerID=40&md5=30dbb1596f4a0529332713c087bd788d}, doi = {10.1109/ICBAPS.2018.8527403}, isbn = {9781538612774}, year = {2018}, date = {2018-01-01}, journal = {2nd International Conference on BioSignal Analysis, Processing and Systems, ICBAPS 2018}, pages = {136-141}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {Electroencephalography (EEG) is a measure of voltages caused due to neural activities within the brain. EEG is a recommended tool for diagnosing neurological problems because it is non-invasive and can be recorded over a longer time-period. The children with Autism Spectrum Disorder (ASD) have difficulty in expressing their emotions due to their inability of proper information processing in brain. Therefore, this research aims to build a sensory profile with the help of EEG biosignal potential to distinguish among different sensory responses. The EEG signals acquired in this research identify different emotional states such as positive-thinking or super-learning and light-relaxation and are within the frequency range of 8-12 Hertz. 64 children participated in this research among which 34 were children with ASD and 30 were normal children. The EEG data was recoded while all the children were provided with vestibular, visual, sound, taste and vestibular sensory stimulations. The raw EEG data was filtered with the help of independent component analysis (ICA) using wavelet transform and EEGLAB software. Later, for building the sensory profile, entropy approximation, means and standard deviations were extracted from the filtered EEG signals. Along with that, the filtered EEG data was also fed to a neural networks (NN) algorithm which was implemented in MATLAB. Results from the acquired EEG signals depicted that during the sensory stimulation phase, the responses of all autistic children were in an unstable state. These findings will equip and aid their learning strategy in the future. © 2018 IEEE.}, note = {cited By 0}, keywords = {Autistic Children, Biomedical Signal Processing, Brain, Children with Autism, Electroencephalography, Electrophysiology, Entropy Approximations, Independent Component Analysis, MATLAB, Neural Networks, Neurological Problems, Sensory Analysis, Sensory Profiles, Sensory Stimulation, Wavelet Packet Transforms}, pubstate = {published}, tppubtype = {conference} } Electroencephalography (EEG) is a measure of voltages caused due to neural activities within the brain. EEG is a recommended tool for diagnosing neurological problems because it is non-invasive and can be recorded over a longer time-period. The children with Autism Spectrum Disorder (ASD) have difficulty in expressing their emotions due to their inability of proper information processing in brain. Therefore, this research aims to build a sensory profile with the help of EEG biosignal potential to distinguish among different sensory responses. The EEG signals acquired in this research identify different emotional states such as positive-thinking or super-learning and light-relaxation and are within the frequency range of 8-12 Hertz. 64 children participated in this research among which 34 were children with ASD and 30 were normal children. The EEG data was recoded while all the children were provided with vestibular, visual, sound, taste and vestibular sensory stimulations. The raw EEG data was filtered with the help of independent component analysis (ICA) using wavelet transform and EEGLAB software. Later, for building the sensory profile, entropy approximation, means and standard deviations were extracted from the filtered EEG signals. Along with that, the filtered EEG data was also fed to a neural networks (NN) algorithm which was implemented in MATLAB. Results from the acquired EEG signals depicted that during the sensory stimulation phase, the responses of all autistic children were in an unstable state. These findings will equip and aid their learning strategy in the future. © 2018 IEEE. |
2014 |
Sudirman, R; Hussin, S S Sensory responses of autism via electroencephalography for Sensory Profile Conference Institute of Electrical and Electronics Engineers Inc., 2014, ISBN: 9781479956869, (cited By 3). Abstract | Links | BibTeX | Tags: Autism, Discrete Wavelet Transforms, Diseases, Electroencephalography, Electrophysiology, Independent Component Analysis, International System, Learning, Sensory Analysis, Sensory Profiles, Sensory Profiling, Sensory Stimulation, Signal Processing, Standard Deviation, Wavelet Packet Transforms @conference{Sudirman2014626, title = {Sensory responses of autism via electroencephalography for Sensory Profile}, author = {R Sudirman and S S Hussin}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84946435600&doi=10.1109%2fICCSCE.2014.7072794&partnerID=40&md5=3e6f1cfe19eae4fad359d2493aebd7e0}, doi = {10.1109/ICCSCE.2014.7072794}, isbn = {9781479956869}, year = {2014}, date = {2014-01-01}, journal = {Proceedings - 4th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2014}, pages = {626-631}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {The aim of this study is to investigate the brain signals of autism children through electroencephalography (EEG) associated to physical tasks. The physical task was meant to stimulate the sensitivity correlation of sensory response of a child. A group of autism children was chosen for this study and were given by five sensory stimulations which are audio, taste, touch, visual and vestibular. The acquisition of brain signals was acquainted using EEG Neurofax 9200 and the electrode positions were using 10-20 International System placements. The preprocessing signals were analyzed using independent component analysis (ICA) using EEGLAB Software and Discrete Wavelet Transform (DWT). The alpha wave was selected by level 6 decomposition and the extracted features represents the characteristic of the sensory task. The means, standard deviations and approximation entropy were extracted on the clean signals and forms into Sensory Profile (Sensory Profiling). From the overall results, the behavior of each autism children has been observed unstable emotion while running the sensory stimulation. The observation also helps to improve their learning strategy for the future work in assessment. © 2014 IEEE.}, note = {cited By 3}, keywords = {Autism, Discrete Wavelet Transforms, Diseases, Electroencephalography, Electrophysiology, Independent Component Analysis, International System, Learning, Sensory Analysis, Sensory Profiles, Sensory Profiling, Sensory Stimulation, Signal Processing, Standard Deviation, Wavelet Packet Transforms}, pubstate = {published}, tppubtype = {conference} } The aim of this study is to investigate the brain signals of autism children through electroencephalography (EEG) associated to physical tasks. The physical task was meant to stimulate the sensitivity correlation of sensory response of a child. A group of autism children was chosen for this study and were given by five sensory stimulations which are audio, taste, touch, visual and vestibular. The acquisition of brain signals was acquainted using EEG Neurofax 9200 and the electrode positions were using 10-20 International System placements. The preprocessing signals were analyzed using independent component analysis (ICA) using EEGLAB Software and Discrete Wavelet Transform (DWT). The alpha wave was selected by level 6 decomposition and the extracted features represents the characteristic of the sensory task. The means, standard deviations and approximation entropy were extracted on the clean signals and forms into Sensory Profile (Sensory Profiling). From the overall results, the behavior of each autism children has been observed unstable emotion while running the sensory stimulation. The observation also helps to improve their learning strategy for the future work in assessment. © 2014 IEEE. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2018 |
Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Journal Article Computer Methods and Programs in Biomedicine, 155 , pp. 39-51, 2018, ISSN: 01692607, (cited By 21). |
Profile indicator for autistic children using EEG biosignal potential of sensory tasks Conference Institute of Electrical and Electronics Engineers Inc., 2018, ISBN: 9781538612774, (cited By 0). |
2014 |
Sensory responses of autism via electroencephalography for Sensory Profile Conference Institute of Electrical and Electronics Engineers Inc., 2014, ISBN: 9781479956869, (cited By 3). |