2018 |
Hariharan, M; Sindhu, R; Vijean, V; Yazid, H; Nadarajaw, T; Yaacob, S; Polat, K Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Journal Article Computer Methods and Programs in Biomedicine, 155 , pp. 39-51, 2018, ISSN: 01692607, (cited By 21). Abstract | Links | BibTeX | Tags: Accidents, Algorithms, Article, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Classification (of information), Classification Algorithm, Classifier, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Extraction, Extreme Learning Machine, Factual, Factual Database, Feature Extraction, Feature Selection Methods, Fuzzy System, Hearing Impairment, Human, Hunger, Infant, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Learning, Linear Predictive Coding, Machine Learning, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Mel Frequency Cepstral Coefficients, Multi-Class Classification, Neural Networks, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Pathophysiology, Prematurity, Reproducibility, Reproducibility of Results, Signal Processing, Speech Recognition, Wavelet Analysis, Wavelet Packet, Wavelet Packet Transforms @article{Hariharan201839, title = {Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification}, author = {M Hariharan and R Sindhu and V Vijean and H Yazid and T Nadarajaw and S Yaacob and K Polat}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036611215&doi=10.1016%2fj.cmpb.2017.11.021&partnerID=40&md5=1f3b17817b00f07cadad6eb61c0f4bf9}, doi = {10.1016/j.cmpb.2017.11.021}, issn = {01692607}, year = {2018}, date = {2018-01-01}, journal = {Computer Methods and Programs in Biomedicine}, volume = {155}, pages = {39-51}, publisher = {Elsevier Ireland Ltd}, abstract = {Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V.}, note = {cited By 21}, keywords = {Accidents, Algorithms, Article, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Classification (of information), Classification Algorithm, Classifier, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Extraction, Extreme Learning Machine, Factual, Factual Database, Feature Extraction, Feature Selection Methods, Fuzzy System, Hearing Impairment, Human, Hunger, Infant, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Learning, Linear Predictive Coding, Machine Learning, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Mel Frequency Cepstral Coefficients, Multi-Class Classification, Neural Networks, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Pathophysiology, Prematurity, Reproducibility, Reproducibility of Results, Signal Processing, Speech Recognition, Wavelet Analysis, Wavelet Packet, Wavelet Packet Transforms}, pubstate = {published}, tppubtype = {article} } Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V. |
2017 |
Hasan, C Z C; Jailani, R; Tahir, Md N Use of statistical approaches and artificial neural networks to identify gait deviations in children with autism spectrum disorder Journal Article International Journal of Biology and Biomedical Engineering, 11 , pp. 74-79, 2017, ISSN: 19984510, (cited By 1). Abstract | Links | BibTeX | Tags: Article, Artificial Neural Network, Autism, Body Height, Body Mass, Children, Clinical Article, Controlled Study, Discriminant Analysis, Early Diagnosis, Female, Gait, Gait Analysis, Gait Disorder, Human, Learning, Male, Pediatrics, School Child, Statistical Analysis, Statistics, Time Series Analysis @article{Hasan201774, title = {Use of statistical approaches and artificial neural networks to identify gait deviations in children with autism spectrum disorder}, author = {C Z C Hasan and R Jailani and N Md Tahir}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043500605&partnerID=40&md5=6f2ffe7c2f5daf9fd02d4456acb94438}, issn = {19984510}, year = {2017}, date = {2017-01-01}, journal = {International Journal of Biology and Biomedical Engineering}, volume = {11}, pages = {74-79}, publisher = {North Atlantic University Union NAUN}, abstract = {Automated differentiation of ASD gait from normal gait patterns is important for early diagnosis as well as ensuring rapid quantitative clinical decision and appropriate treatment planning. This study explores the use of statistical feature selection approaches and artificial neural networks (ANN) for automated identification of gait deviations in children with ASD, on the basis of dominant gait features derived from the three-dimensional (3D) joint kinematic data. The gait data from 30 ASD children and 30 normal healthy children were measured using a state-of-the-art 3D motion analysis system during self-selected speed barefoot walking. Kinematic gait features from the sagittal, frontal and transverse joint angles waveforms at the pelvis, hip, knee, and ankle were extracted using time-series parameterization. Two statistical feature selection techniques, namely the between-group tests (independent samples t-test and Mann-Whitney U test) and the stepwise discriminant analysis (SWDA) were adopted as feature selector to select the meaningful gait features that were then used to train the ANN. The 10-fold cross-validation test results indicate that the selected gait features using SWDA technique are more reliable for ASD gait classification with 91.7% accuracy, 93.3% sensitivity, and 90.0% specificity. The findings of the current study demonstrate that kinematic gait features with the combination of SWDA feature selector and ANN classifier would serve as a potential tool for early diagnosis of gait deviations in children with ASD as well as provide support to clinicians and therapists for making objective, accurate, and rapid clinical decisions that lead to the appropriate targeted treatments. © 2017 North Atlantic University Union NAUN. All Rights Reserved.}, note = {cited By 1}, keywords = {Article, Artificial Neural Network, Autism, Body Height, Body Mass, Children, Clinical Article, Controlled Study, Discriminant Analysis, Early Diagnosis, Female, Gait, Gait Analysis, Gait Disorder, Human, Learning, Male, Pediatrics, School Child, Statistical Analysis, Statistics, Time Series Analysis}, pubstate = {published}, tppubtype = {article} } Automated differentiation of ASD gait from normal gait patterns is important for early diagnosis as well as ensuring rapid quantitative clinical decision and appropriate treatment planning. This study explores the use of statistical feature selection approaches and artificial neural networks (ANN) for automated identification of gait deviations in children with ASD, on the basis of dominant gait features derived from the three-dimensional (3D) joint kinematic data. The gait data from 30 ASD children and 30 normal healthy children were measured using a state-of-the-art 3D motion analysis system during self-selected speed barefoot walking. Kinematic gait features from the sagittal, frontal and transverse joint angles waveforms at the pelvis, hip, knee, and ankle were extracted using time-series parameterization. Two statistical feature selection techniques, namely the between-group tests (independent samples t-test and Mann-Whitney U test) and the stepwise discriminant analysis (SWDA) were adopted as feature selector to select the meaningful gait features that were then used to train the ANN. The 10-fold cross-validation test results indicate that the selected gait features using SWDA technique are more reliable for ASD gait classification with 91.7% accuracy, 93.3% sensitivity, and 90.0% specificity. The findings of the current study demonstrate that kinematic gait features with the combination of SWDA feature selector and ANN classifier would serve as a potential tool for early diagnosis of gait deviations in children with ASD as well as provide support to clinicians and therapists for making objective, accurate, and rapid clinical decisions that lead to the appropriate targeted treatments. © 2017 North Atlantic University Union NAUN. All Rights Reserved. |
2016 |
Gravier, A; Quek, C; Duch, W; Wahab, A; Gravier-Rymaszewska, J Neural network modelling of the influence of channelopathies on reflex visual attention Journal Article Cognitive Neurodynamics, 10 (1), pp. 49-72, 2016, ISSN: 18714080, (cited By 8). Abstract | Links | BibTeX | Tags: Article, Artificial Neural Network, Attention, Autism, Calcium Channelopathy, Cell Structure, Cognition, Connectome, Electric Activity, Learning, Mathematical Analysis, Mathematical Model, Nerve Cell, Simulation, Visual Reflex @article{Gravier201649, title = {Neural network modelling of the influence of channelopathies on reflex visual attention}, author = {A Gravier and C Quek and W Duch and A Wahab and J Gravier-Rymaszewska}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955207541&doi=10.1007%2fs11571-015-9365-x&partnerID=40&md5=52f56b25f1d05a2d8eb0249e67e49f45}, doi = {10.1007/s11571-015-9365-x}, issn = {18714080}, year = {2016}, date = {2016-01-01}, journal = {Cognitive Neurodynamics}, volume = {10}, number = {1}, pages = {49-72}, publisher = {Springer Netherlands}, abstract = {This paper introduces a model of Emergent Visual Attention in presence of calcium channelopathy (EVAC). By modelling channelopathy, EVAC constitutes an effort towards identifying the possible causes of autism. The network structure embodies the dual pathways model of cortical processing of visual input, with reflex attention as an emergent property of neural interactions. EVAC extends existing work by introducing attention shift in a larger-scale network and applying a phenomenological model of channelopathy. In presence of a distractor, the channelopathic network’s rate of failure to shift attention is lower than the control network’s, but overall, the control network exhibits a lower classification error rate. The simulation results also show differences in task-relative reaction times between control and channelopathic networks. The attention shift timings inferred from the model are consistent with studies of attention shift in autistic children. © 2015, Springer Science+Business Media Dordrecht.}, note = {cited By 8}, keywords = {Article, Artificial Neural Network, Attention, Autism, Calcium Channelopathy, Cell Structure, Cognition, Connectome, Electric Activity, Learning, Mathematical Analysis, Mathematical Model, Nerve Cell, Simulation, Visual Reflex}, pubstate = {published}, tppubtype = {article} } This paper introduces a model of Emergent Visual Attention in presence of calcium channelopathy (EVAC). By modelling channelopathy, EVAC constitutes an effort towards identifying the possible causes of autism. The network structure embodies the dual pathways model of cortical processing of visual input, with reflex attention as an emergent property of neural interactions. EVAC extends existing work by introducing attention shift in a larger-scale network and applying a phenomenological model of channelopathy. In presence of a distractor, the channelopathic network’s rate of failure to shift attention is lower than the control network’s, but overall, the control network exhibits a lower classification error rate. The simulation results also show differences in task-relative reaction times between control and channelopathic networks. The attention shift timings inferred from the model are consistent with studies of attention shift in autistic children. © 2015, Springer Science+Business Media Dordrecht. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2018 |
Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Journal Article Computer Methods and Programs in Biomedicine, 155 , pp. 39-51, 2018, ISSN: 01692607, (cited By 21). |
2017 |
Use of statistical approaches and artificial neural networks to identify gait deviations in children with autism spectrum disorder Journal Article International Journal of Biology and Biomedical Engineering, 11 , pp. 74-79, 2017, ISSN: 19984510, (cited By 1). |
2016 |
Neural network modelling of the influence of channelopathies on reflex visual attention Journal Article Cognitive Neurodynamics, 10 (1), pp. 49-72, 2016, ISSN: 18714080, (cited By 8). |