2017 |
Hameed, S S; Hassan, R; Muhammad, F F Selection and classification of gene expression in autism disorder: Use of a combination of statistical filters and a GBPSO-SVM algorithm Journal Article PLoS ONE, 12 (11), 2017, ISSN: 19326203, (cited By 11). Abstract | Links | BibTeX | Tags: Accuracy, Algorithms, Article, Autism, Autism Spectrum Disorders, CAPS2 Gene, Classification (of information), Classifier, Experimental Study, Gene, Gene Expression, Gene Identification, Genetic Association, Genetic Procedures, Genetic Risk, Genetics, Geometric Binary Particle Swarm Optimization Support Vector Machine Algorithm, Human, RIsk Assessment, Standardization, Statistical Filter, Statistical Parameters, Statistics, Support Vector Machines @article{Hameed2017, title = {Selection and classification of gene expression in autism disorder: Use of a combination of statistical filters and a GBPSO-SVM algorithm}, author = {S S Hameed and R Hassan and F F Muhammad}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033361187&doi=10.1371%2fjournal.pone.0187371&partnerID=40&md5=f9260d41165145f229a3cf157699635e}, doi = {10.1371/journal.pone.0187371}, issn = {19326203}, year = {2017}, date = {2017-01-01}, journal = {PLoS ONE}, volume = {12}, number = {11}, publisher = {Public Library of Science}, abstract = {In this work, gene expression in autism spectrum disorder (ASD) is analyzed with the goal of selecting the most attributed genes and performing classification. The objective was achieved by utilizing a combination of various statistical filters and a wrapper-based geometric binary particle swarm optimization-support vector machine (GBPSO-SVM) algorithm. The utilization of different filters was accentuated by incorporating a mean and median ratio criterion to remove very similar genes. The results showed that the most discriminative genes that were identified in the first and last selection steps included the presence of a repetitive gene (CAPS2), which was assigned as the gene most highly related to ASD risk. The merged gene subset that was selected by the GBPSO-SVM algorithm was able to enhance the classification accuracy. © 2017 Hameed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.}, note = {cited By 11}, keywords = {Accuracy, Algorithms, Article, Autism, Autism Spectrum Disorders, CAPS2 Gene, Classification (of information), Classifier, Experimental Study, Gene, Gene Expression, Gene Identification, Genetic Association, Genetic Procedures, Genetic Risk, Genetics, Geometric Binary Particle Swarm Optimization Support Vector Machine Algorithm, Human, RIsk Assessment, Standardization, Statistical Filter, Statistical Parameters, Statistics, Support Vector Machines}, pubstate = {published}, tppubtype = {article} } In this work, gene expression in autism spectrum disorder (ASD) is analyzed with the goal of selecting the most attributed genes and performing classification. The objective was achieved by utilizing a combination of various statistical filters and a wrapper-based geometric binary particle swarm optimization-support vector machine (GBPSO-SVM) algorithm. The utilization of different filters was accentuated by incorporating a mean and median ratio criterion to remove very similar genes. The results showed that the most discriminative genes that were identified in the first and last selection steps included the presence of a repetitive gene (CAPS2), which was assigned as the gene most highly related to ASD risk. The merged gene subset that was selected by the GBPSO-SVM algorithm was able to enhance the classification accuracy. © 2017 Hameed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
2014 |
Brett, M; McPherson, J; Zang, Z J; Lai, A; Tan, E -S; Ng, I; Ong, L -C; Cham, B; Tan, P; Rozen, S; Tan, E -C PLoS ONE, 9 (4), 2014, ISSN: 19326203, (cited By 20). Abstract | Links | BibTeX | Tags: Article, ATRX Gene, Autism, Autism Spectrum Disorders, Children, Clinical Article, Congenital Abnormalities, Congenital Malformation, Controlled Study, Diagnostic Test, DNA Mutational Analysis, Female, Gene, Gene Expression Profiling, Gene Mutation, Gene Targeting, Genetic Association, Genetic Association Studies, Genetic Disorder, Genetic Variability, Genetic Variation, Genetics, Genome-Wide Association Study, High Throughput Sequencing, High-Throughput Nucleotide Sequencing, Human, Intellectual Disability, Intellectual Impairment, Karyotype, L1CAM Gene, Male, Mutation, Nonsense Mutation, Nucleotide Sequence, Phenotype, Polymorphism, RNA Splice Sites, RNA Splicing, Single Nucleotide, Single Nucleotide Polymorphism @article{Brett2014, title = {Massively parallel sequencing of patients with intellectual disability, congenital anomalies and/or autism spectrum disorders with a targeted gene panel}, author = {M Brett and J McPherson and Z J Zang and A Lai and E -S Tan and I Ng and L -C Ong and B Cham and P Tan and S Rozen and E -C Tan}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898625023&doi=10.1371%2fjournal.pone.0093409&partnerID=40&md5=f673e204a009bf84de81ea69dcd026db}, doi = {10.1371/journal.pone.0093409}, issn = {19326203}, year = {2014}, date = {2014-01-01}, journal = {PLoS ONE}, volume = {9}, number = {4}, publisher = {Public Library of Science}, abstract = {Developmental delay and/or intellectual disability (DD/ID) affects 1-3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81-84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322 × to 798 ×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism. © 2014 Brett et al.}, note = {cited By 20}, keywords = {Article, ATRX Gene, Autism, Autism Spectrum Disorders, Children, Clinical Article, Congenital Abnormalities, Congenital Malformation, Controlled Study, Diagnostic Test, DNA Mutational Analysis, Female, Gene, Gene Expression Profiling, Gene Mutation, Gene Targeting, Genetic Association, Genetic Association Studies, Genetic Disorder, Genetic Variability, Genetic Variation, Genetics, Genome-Wide Association Study, High Throughput Sequencing, High-Throughput Nucleotide Sequencing, Human, Intellectual Disability, Intellectual Impairment, Karyotype, L1CAM Gene, Male, Mutation, Nonsense Mutation, Nucleotide Sequence, Phenotype, Polymorphism, RNA Splice Sites, RNA Splicing, Single Nucleotide, Single Nucleotide Polymorphism}, pubstate = {published}, tppubtype = {article} } Developmental delay and/or intellectual disability (DD/ID) affects 1-3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81-84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322 × to 798 ×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism. © 2014 Brett et al. |
2013 |
Mousavizadeh, K; Askari, M; Arian, H; Gorjipour, F; Nikpour, A R; Tavafjadid, M; Aryani, O; Kamalidehghan, B; Maroof, H R; Houshmand, M Association of human mtDNA mutations with autism in Iranian patients Journal Article Journal of Research in Medical Sciences, 18 (10), pp. 926, 2013, ISSN: 17351995, (cited By 2). Links | BibTeX | Tags: Autism, Clinical Article, Controlled Study, Gene, Gene Frequency, Gene Mutation, Gene Sequence, Genetic Association, Genetic Risk, Human, Letter, Mitochondrial DNA, Molecular Phylogeny, Pathophysiology, Point Mutation, Polymerase Chain Reaction @article{Mousavizadeh2013926, title = {Association of human mtDNA mutations with autism in Iranian patients}, author = {K Mousavizadeh and M Askari and H Arian and F Gorjipour and A R Nikpour and M Tavafjadid and O Aryani and B Kamalidehghan and H R Maroof and M Houshmand}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887270916&partnerID=40&md5=3922601b0364489a2b76d620316cc150}, issn = {17351995}, year = {2013}, date = {2013-01-01}, journal = {Journal of Research in Medical Sciences}, volume = {18}, number = {10}, pages = {926}, publisher = {Isfahan University of Medical Sciences(IUMS)}, note = {cited By 2}, keywords = {Autism, Clinical Article, Controlled Study, Gene, Gene Frequency, Gene Mutation, Gene Sequence, Genetic Association, Genetic Risk, Human, Letter, Mitochondrial DNA, Molecular Phylogeny, Pathophysiology, Point Mutation, Polymerase Chain Reaction}, pubstate = {published}, tppubtype = {article} } |
2012 |
Tan, E H; Razak, S A; Abdullah, J M; Yusoff, Mohamed A A De-novo mutations and genetic variation in the SCN1A gene in Malaysian patients with generalized epilepsy with febrile seizures plus (GEFS+) Journal Article Epilepsy Research, 102 (3), pp. 210-215, 2012, ISSN: 09201211, (cited By 2). Abstract | Links | BibTeX | Tags: Alanine, Amino Acid Substitution, Arginine, Article, Asparagine, Aspartic Acid, Children, Clinical Article, Clinical Feature, Controlled Study, Disease Association, DNA Mutational Analysis, DNA Sequence, Electroencephalography, Epilepsy, Febrile, Febrile Convulsion, Female, Gene, Gene Frequency, Gene Identification, Generalized, Generalized Epilepsy, Genetic Association, Genetic Predisposition, Genetic Screening, Genetic Variability, Glycine, Histidine, Human, Infant, Malaysia, Male, Missense Mutation, Molecular Pathology, Mutation, Mutational Analysis, Mutator Gene, Nav1.1 Voltage-Gated Sodium Channel, Onset Age, Patient Assessment, Polymorphism, Preschool Child, Priority Journal, Promoter Region, School Child, Seizure, Sequence Analysis, Single Nucleotide, Single Nucleotide Polymorphism, Sodium Channel Nav1.1, Voltage Gated Sodium Channel Alpha1 Subunit Gene @article{Tan2012210, title = {De-novo mutations and genetic variation in the SCN1A gene in Malaysian patients with generalized epilepsy with febrile seizures plus (GEFS+)}, author = {E H Tan and S A Razak and J M Abdullah and A A Mohamed Yusoff}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870296042&doi=10.1016%2fj.eplepsyres.2012.08.004&partnerID=40&md5=25cc4eeb07db2492a7c04c6b3b3b2167}, doi = {10.1016/j.eplepsyres.2012.08.004}, issn = {09201211}, year = {2012}, date = {2012-01-01}, journal = {Epilepsy Research}, volume = {102}, number = {3}, pages = {210-215}, abstract = {Generalized epilepsy with febrile seizures plus (GEFS+) comprises a group of clinically and genetically heterogeneous epilepsy syndrome. Here, we provide the first report of clinical presentation and mutational analysis of SCN1A gene in 36 Malaysian GEFS+ patients. Mutational analysis of SCN1A gene revealed twenty seven sequence variants (missense mutation and silent polymorphism also intronic polymorphism), as well as 2 novel de-novo mutations were found in our patients at coding regions, c.5197A>G (N1733D) and c.4748A>G (H1583R). Our findings provide potential genetic insights into the pathogenesis of GEFS+ in Malaysian populations concerning the SCN1A gene mutations. © 2012 Elsevier B.V.}, note = {cited By 2}, keywords = {Alanine, Amino Acid Substitution, Arginine, Article, Asparagine, Aspartic Acid, Children, Clinical Article, Clinical Feature, Controlled Study, Disease Association, DNA Mutational Analysis, DNA Sequence, Electroencephalography, Epilepsy, Febrile, Febrile Convulsion, Female, Gene, Gene Frequency, Gene Identification, Generalized, Generalized Epilepsy, Genetic Association, Genetic Predisposition, Genetic Screening, Genetic Variability, Glycine, Histidine, Human, Infant, Malaysia, Male, Missense Mutation, Molecular Pathology, Mutation, Mutational Analysis, Mutator Gene, Nav1.1 Voltage-Gated Sodium Channel, Onset Age, Patient Assessment, Polymorphism, Preschool Child, Priority Journal, Promoter Region, School Child, Seizure, Sequence Analysis, Single Nucleotide, Single Nucleotide Polymorphism, Sodium Channel Nav1.1, Voltage Gated Sodium Channel Alpha1 Subunit Gene}, pubstate = {published}, tppubtype = {article} } Generalized epilepsy with febrile seizures plus (GEFS+) comprises a group of clinically and genetically heterogeneous epilepsy syndrome. Here, we provide the first report of clinical presentation and mutational analysis of SCN1A gene in 36 Malaysian GEFS+ patients. Mutational analysis of SCN1A gene revealed twenty seven sequence variants (missense mutation and silent polymorphism also intronic polymorphism), as well as 2 novel de-novo mutations were found in our patients at coding regions, c.5197A>G (N1733D) and c.4748A>G (H1583R). Our findings provide potential genetic insights into the pathogenesis of GEFS+ in Malaysian populations concerning the SCN1A gene mutations. © 2012 Elsevier B.V. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2017 |
Selection and classification of gene expression in autism disorder: Use of a combination of statistical filters and a GBPSO-SVM algorithm Journal Article PLoS ONE, 12 (11), 2017, ISSN: 19326203, (cited By 11). |
2014 |
PLoS ONE, 9 (4), 2014, ISSN: 19326203, (cited By 20). |
2013 |
Association of human mtDNA mutations with autism in Iranian patients Journal Article Journal of Research in Medical Sciences, 18 (10), pp. 926, 2013, ISSN: 17351995, (cited By 2). |
2012 |
De-novo mutations and genetic variation in the SCN1A gene in Malaysian patients with generalized epilepsy with febrile seizures plus (GEFS+) Journal Article Epilepsy Research, 102 (3), pp. 210-215, 2012, ISSN: 09201211, (cited By 2). |