2017 |
Hameed, S S; Hassan, R; Muhammad, F F Selection and classification of gene expression in autism disorder: Use of a combination of statistical filters and a GBPSO-SVM algorithm Journal Article PLoS ONE, 12 (11), 2017, ISSN: 19326203, (cited By 11). Abstract | Links | BibTeX | Tags: Accuracy, Algorithms, Article, Autism, Autism Spectrum Disorders, CAPS2 Gene, Classification (of information), Classifier, Experimental Study, Gene, Gene Expression, Gene Identification, Genetic Association, Genetic Procedures, Genetic Risk, Genetics, Geometric Binary Particle Swarm Optimization Support Vector Machine Algorithm, Human, RIsk Assessment, Standardization, Statistical Filter, Statistical Parameters, Statistics, Support Vector Machines @article{Hameed2017, title = {Selection and classification of gene expression in autism disorder: Use of a combination of statistical filters and a GBPSO-SVM algorithm}, author = {S S Hameed and R Hassan and F F Muhammad}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033361187&doi=10.1371%2fjournal.pone.0187371&partnerID=40&md5=f9260d41165145f229a3cf157699635e}, doi = {10.1371/journal.pone.0187371}, issn = {19326203}, year = {2017}, date = {2017-01-01}, journal = {PLoS ONE}, volume = {12}, number = {11}, publisher = {Public Library of Science}, abstract = {In this work, gene expression in autism spectrum disorder (ASD) is analyzed with the goal of selecting the most attributed genes and performing classification. The objective was achieved by utilizing a combination of various statistical filters and a wrapper-based geometric binary particle swarm optimization-support vector machine (GBPSO-SVM) algorithm. The utilization of different filters was accentuated by incorporating a mean and median ratio criterion to remove very similar genes. The results showed that the most discriminative genes that were identified in the first and last selection steps included the presence of a repetitive gene (CAPS2), which was assigned as the gene most highly related to ASD risk. The merged gene subset that was selected by the GBPSO-SVM algorithm was able to enhance the classification accuracy. © 2017 Hameed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.}, note = {cited By 11}, keywords = {Accuracy, Algorithms, Article, Autism, Autism Spectrum Disorders, CAPS2 Gene, Classification (of information), Classifier, Experimental Study, Gene, Gene Expression, Gene Identification, Genetic Association, Genetic Procedures, Genetic Risk, Genetics, Geometric Binary Particle Swarm Optimization Support Vector Machine Algorithm, Human, RIsk Assessment, Standardization, Statistical Filter, Statistical Parameters, Statistics, Support Vector Machines}, pubstate = {published}, tppubtype = {article} } In this work, gene expression in autism spectrum disorder (ASD) is analyzed with the goal of selecting the most attributed genes and performing classification. The objective was achieved by utilizing a combination of various statistical filters and a wrapper-based geometric binary particle swarm optimization-support vector machine (GBPSO-SVM) algorithm. The utilization of different filters was accentuated by incorporating a mean and median ratio criterion to remove very similar genes. The results showed that the most discriminative genes that were identified in the first and last selection steps included the presence of a repetitive gene (CAPS2), which was assigned as the gene most highly related to ASD risk. The merged gene subset that was selected by the GBPSO-SVM algorithm was able to enhance the classification accuracy. © 2017 Hameed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
2015 |
Haerian, B S; Shaári, H M; Tan, H J; Fong, C Y; Wong, S W; Ong, L C; Raymond, A A; Tan, C T; Mohamed, Z Genomics, 105 (4), pp. 229-236, 2015, ISSN: 08887543, (cited By 5). Abstract | Links | BibTeX | Tags: Adolescent, Adult, Article, Case-Control Studies, Controlled Study, DNA, Epilepsy, Epistasis, Female, Gene, Gene Interaction, Genetic Polymorphism, Genetic Predisposition, Genetic Predisposition to Disease, Genetic Risk, Genetic Variability, Genetics, Genotype, Group F, Human, Major Clinical Study, Malaysia, Male, Member 1, Member 2, Middle Aged, Nav1.1 Voltage-Gated Sodium Channel, Nuclear Receptor Subfamily 1, Polymorphism, Priority Journal, Retinoid Related Orphan Receptor Alpha, Retinoid Related Orphan Receptor Beta, Risk, RORA Gene, RORA Protein, RORB Protein, SCN1A Gene, SCN1A Protein, Single Nucleotide, Single Nucleotide Polymorphism, Sodium Channel Nav1.1, Young Adult @article{Haerian2015229, title = {RORA gene rs12912233 and rs880626 polymorphisms and their interaction with SCN1A rs3812718 in the risk of epilepsy: A case-control study in Malaysia}, author = {B S Haerian and H M Shaári and H J Tan and C Y Fong and S W Wong and L C Ong and A A Raymond and C T Tan and Z Mohamed}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924135981&doi=10.1016%2fj.ygeno.2015.02.001&partnerID=40&md5=209a1720cddfd76bfa515ee8940749d5}, doi = {10.1016/j.ygeno.2015.02.001}, issn = {08887543}, year = {2015}, date = {2015-01-01}, journal = {Genomics}, volume = {105}, number = {4}, pages = {229-236}, publisher = {Academic Press Inc.}, abstract = {RAR-related orphan receptors A (RORA) and B (RORB) and voltage-gated sodium channel type 1 (SCN1A) genes play critical roles in the regulation of the circadian clock. Evidence has shown an association of RORA and RORB polymorphisms with susceptibility to autism and depression. Hence, we tested the association of RORA rs12912233, rs16943429, rs880626, rs2290430, and rs12900948; RORB rs1157358, rs7022435, rs3750420, and rs3903529; and SCN1A rs3812718 with epilepsy risk in the Malaysians. DNA was genotyped in 1789 subjects (39% epilepsy patients) by using MassARRAY (Sequenom). Significant association was obtained for rs12912233 in Malaysian Chinese (p= 0.003). Interaction between rs12912233-rs880626 and rs3812718 was associated with the epilepsy risk in the subjects overall (p= 0.001). Results show that RORA rs12912233 alone might be a possible risk variant for epilepsy in Malaysian Chinese, but that, together with RORA rs880626 and SCN1A rs3812718, this polymorphism may have a synergistic effect in the epilepsy risk in Malaysians. © 2015 Elsevier Inc.}, note = {cited By 5}, keywords = {Adolescent, Adult, Article, Case-Control Studies, Controlled Study, DNA, Epilepsy, Epistasis, Female, Gene, Gene Interaction, Genetic Polymorphism, Genetic Predisposition, Genetic Predisposition to Disease, Genetic Risk, Genetic Variability, Genetics, Genotype, Group F, Human, Major Clinical Study, Malaysia, Male, Member 1, Member 2, Middle Aged, Nav1.1 Voltage-Gated Sodium Channel, Nuclear Receptor Subfamily 1, Polymorphism, Priority Journal, Retinoid Related Orphan Receptor Alpha, Retinoid Related Orphan Receptor Beta, Risk, RORA Gene, RORA Protein, RORB Protein, SCN1A Gene, SCN1A Protein, Single Nucleotide, Single Nucleotide Polymorphism, Sodium Channel Nav1.1, Young Adult}, pubstate = {published}, tppubtype = {article} } RAR-related orphan receptors A (RORA) and B (RORB) and voltage-gated sodium channel type 1 (SCN1A) genes play critical roles in the regulation of the circadian clock. Evidence has shown an association of RORA and RORB polymorphisms with susceptibility to autism and depression. Hence, we tested the association of RORA rs12912233, rs16943429, rs880626, rs2290430, and rs12900948; RORB rs1157358, rs7022435, rs3750420, and rs3903529; and SCN1A rs3812718 with epilepsy risk in the Malaysians. DNA was genotyped in 1789 subjects (39% epilepsy patients) by using MassARRAY (Sequenom). Significant association was obtained for rs12912233 in Malaysian Chinese (p= 0.003). Interaction between rs12912233-rs880626 and rs3812718 was associated with the epilepsy risk in the subjects overall (p= 0.001). Results show that RORA rs12912233 alone might be a possible risk variant for epilepsy in Malaysian Chinese, but that, together with RORA rs880626 and SCN1A rs3812718, this polymorphism may have a synergistic effect in the epilepsy risk in Malaysians. © 2015 Elsevier Inc. |
2013 |
Mousavizadeh, K; Askari, M; Arian, H; Gorjipour, F; Nikpour, A R; Tavafjadid, M; Aryani, O; Kamalidehghan, B; Maroof, H R; Houshmand, M Association of human mtDNA mutations with autism in Iranian patients Journal Article Journal of Research in Medical Sciences, 18 (10), pp. 926, 2013, ISSN: 17351995, (cited By 2). Links | BibTeX | Tags: Autism, Clinical Article, Controlled Study, Gene, Gene Frequency, Gene Mutation, Gene Sequence, Genetic Association, Genetic Risk, Human, Letter, Mitochondrial DNA, Molecular Phylogeny, Pathophysiology, Point Mutation, Polymerase Chain Reaction @article{Mousavizadeh2013926, title = {Association of human mtDNA mutations with autism in Iranian patients}, author = {K Mousavizadeh and M Askari and H Arian and F Gorjipour and A R Nikpour and M Tavafjadid and O Aryani and B Kamalidehghan and H R Maroof and M Houshmand}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887270916&partnerID=40&md5=3922601b0364489a2b76d620316cc150}, issn = {17351995}, year = {2013}, date = {2013-01-01}, journal = {Journal of Research in Medical Sciences}, volume = {18}, number = {10}, pages = {926}, publisher = {Isfahan University of Medical Sciences(IUMS)}, note = {cited By 2}, keywords = {Autism, Clinical Article, Controlled Study, Gene, Gene Frequency, Gene Mutation, Gene Sequence, Genetic Association, Genetic Risk, Human, Letter, Mitochondrial DNA, Molecular Phylogeny, Pathophysiology, Point Mutation, Polymerase Chain Reaction}, pubstate = {published}, tppubtype = {article} } |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2017 |
Selection and classification of gene expression in autism disorder: Use of a combination of statistical filters and a GBPSO-SVM algorithm Journal Article PLoS ONE, 12 (11), 2017, ISSN: 19326203, (cited By 11). |
2015 |
Genomics, 105 (4), pp. 229-236, 2015, ISSN: 08887543, (cited By 5). |
2013 |
Association of human mtDNA mutations with autism in Iranian patients Journal Article Journal of Research in Medical Sciences, 18 (10), pp. 926, 2013, ISSN: 17351995, (cited By 2). |