2015 |
Gallagher, D; Voronova, A; Zander, M A; Cancino, G I; Bramall, A; Krause, M P; Abad, C; Tekin, M; Neilsen, P M; Callen, D F; Scherer, S W; Keller, G M; Kaplan, D R; Walz, K; Miller, F D Ankrd11 is a chromatin regulator involved in autism that is essential for neural development Journal Article Developmental Cell, 32 (1), pp. 31-42, 2015, ISSN: 15345807, (cited By 52). Abstract | Links | BibTeX | Tags: Acetylation, Animal Behavior, Animal Cell, Animals, Ankrd11 Protein, Ankyrin, Ankyrin Repeat Domain Containing Protein 11, Article, Autism, Autism Spectrum Disorders, Behaviour, Biological Marker, Blotting, Brain Cell Culture, Cell Culture, Cell Differentiation, Cell Proliferation, Cells, Chemistry, Chromatin, Chromatin Immunoprecipitation, Cultured, DNA Binding Protein, DNA Microarray, DNA-Binding Proteins, Enzyme Activity, Female, Gene, Gene Expression Profiling, Gene Targeting, Genetics, Histone, Histone Acetylation, Histone Acetyltransferase, Histone Deacetylase, Histone Deacetylase 3, Histone Deacetylases, Histones, Human, Human Cell, Immunoprecipitation, Messenger, Messenger RNA, Metabolism, Mice, Mouse, Murinae, Mus, Nerve Cell Differentiation, Nervous System Development, Neurogenesis, Nonhuman, Oligonucleotide Array Sequence Analysis, Pathology, Phenotype, Physiology, Point Mutation, Post-Translational, Priority Journal, Protein Expression, Protein Processing, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Reverse Transcription Polymerase Chain Reaction, RNA, Small Interfering, Small Interfering RNA, Unclassified Drug, Western, Western Blotting @article{Gallagher201531, title = {Ankrd11 is a chromatin regulator involved in autism that is essential for neural development}, author = {D Gallagher and A Voronova and M A Zander and G I Cancino and A Bramall and M P Krause and C Abad and M Tekin and P M Neilsen and D F Callen and S W Scherer and G M Keller and D R Kaplan and K Walz and F D Miller}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922343890&doi=10.1016%2fj.devcel.2014.11.031&partnerID=40&md5=ad7b8bd3ead790f092e1d8a276d4f25c}, doi = {10.1016/j.devcel.2014.11.031}, issn = {15345807}, year = {2015}, date = {2015-01-01}, journal = {Developmental Cell}, volume = {32}, number = {1}, pages = {31-42}, publisher = {Cell Press}, abstract = {Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, andaberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation inthe Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD. © 2015 Elsevier Inc.}, note = {cited By 52}, keywords = {Acetylation, Animal Behavior, Animal Cell, Animals, Ankrd11 Protein, Ankyrin, Ankyrin Repeat Domain Containing Protein 11, Article, Autism, Autism Spectrum Disorders, Behaviour, Biological Marker, Blotting, Brain Cell Culture, Cell Culture, Cell Differentiation, Cell Proliferation, Cells, Chemistry, Chromatin, Chromatin Immunoprecipitation, Cultured, DNA Binding Protein, DNA Microarray, DNA-Binding Proteins, Enzyme Activity, Female, Gene, Gene Expression Profiling, Gene Targeting, Genetics, Histone, Histone Acetylation, Histone Acetyltransferase, Histone Deacetylase, Histone Deacetylase 3, Histone Deacetylases, Histones, Human, Human Cell, Immunoprecipitation, Messenger, Messenger RNA, Metabolism, Mice, Mouse, Murinae, Mus, Nerve Cell Differentiation, Nervous System Development, Neurogenesis, Nonhuman, Oligonucleotide Array Sequence Analysis, Pathology, Phenotype, Physiology, Point Mutation, Post-Translational, Priority Journal, Protein Expression, Protein Processing, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Reverse Transcription Polymerase Chain Reaction, RNA, Small Interfering, Small Interfering RNA, Unclassified Drug, Western, Western Blotting}, pubstate = {published}, tppubtype = {article} } Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, andaberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation inthe Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD. © 2015 Elsevier Inc. |
Moktar, M N; Fikry, A; Musa, R; Hassan, H; Ahmad, S S; Ismail, Z; Samat, N; Hashim, R Extending cultural model of assistive technology design for autism treatment Conference Institute of Electrical and Electronics Engineers Inc., 2015, ISBN: 9781479957651, (cited By 1). Abstract | Links | BibTeX | Tags: Assistive Technology, Autism, Autism Treatments, Cell Culture, Cultural Aspects, Cultural Changes, Cultural Difference, Cultural Diversity, Design, Diseases, Manufacture, Robotics, Technological Growth @conference{Moktar2015172, title = {Extending cultural model of assistive technology design for autism treatment}, author = {M N Moktar and A Fikry and R Musa and H Hassan and S S Ahmad and Z Ismail and N Samat and R Hashim}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959542249&doi=10.1109%2fROMA.2014.7295882&partnerID=40&md5=43f3d322ae7e765e39205c5990862b05}, doi = {10.1109/ROMA.2014.7295882}, isbn = {9781479957651}, year = {2015}, date = {2015-01-01}, journal = {2014 IEEE International Symposium on Robotics and Manufacturing Automation, IEEE-ROMA2014}, pages = {172-175}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, abstract = {This paper depicts the prominence of cultural on the adoption of assistive technology, in terms of design, which are particularly anticipated for autism treatment. The researchers believe that cultural aspect should be considered in designing assistive technology in treating autistic individual. It is necessary to assess cultural differences critically so that assistive technology can be accepted extensively. Occasional review on cultural changes is also needed in countries with cultural diversity to ensure that the technological growth is compatible with the current recognition. This paper reviews on disability treatment using assistive technology and proposes an extension for the existing cultural model for assistive technology design. © 2014 IEEE.}, note = {cited By 1}, keywords = {Assistive Technology, Autism, Autism Treatments, Cell Culture, Cultural Aspects, Cultural Changes, Cultural Difference, Cultural Diversity, Design, Diseases, Manufacture, Robotics, Technological Growth}, pubstate = {published}, tppubtype = {conference} } This paper depicts the prominence of cultural on the adoption of assistive technology, in terms of design, which are particularly anticipated for autism treatment. The researchers believe that cultural aspect should be considered in designing assistive technology in treating autistic individual. It is necessary to assess cultural differences critically so that assistive technology can be accepted extensively. Occasional review on cultural changes is also needed in countries with cultural diversity to ensure that the technological growth is compatible with the current recognition. This paper reviews on disability treatment using assistive technology and proposes an extension for the existing cultural model for assistive technology design. © 2014 IEEE. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2015 |
Ankrd11 is a chromatin regulator involved in autism that is essential for neural development Journal Article Developmental Cell, 32 (1), pp. 31-42, 2015, ISSN: 15345807, (cited By 52). |
Extending cultural model of assistive technology design for autism treatment Conference Institute of Electrical and Electronics Engineers Inc., 2015, ISBN: 9781479957651, (cited By 1). |