2018 |
Tsuchida, N; Hamada, K; Shiina, M; Kato, M; Kobayashi, Y; Tohyama, J; Kimura, K; Hoshino, K; Ganesan, V; Teik, K W; Nakashima, M; Mitsuhashi, S; Mizuguchi, T; Takata, A; Miyake, N; Saitsu, H; Ogata, K; Miyatake, S; Matsumoto, N GRIN2D variants in three cases of developmental and epileptic encephalopathy Journal Article Clinical Genetics, 94 (6), pp. 538-547, 2018, ISSN: 00099163, (cited By 4). Abstract | Links | BibTeX | Tags: Adolescent, Allele, Amino Acid Sequence, Amino Acid Substitution, Amino Terminal Sequence, Anemia, Antibiotic Agent, Antibiotic Therapy, Article, Atonic Seizure, Attention Deficit Disorder, Autism, Binding Affinity, Brain, Brain Atrophy, Carbamazepine, Case Report, Channel Gating, Chemistry, Children, Clinical Article, Clinical Feature, Clobazam, Clonazepam, Conformational Transition, Continuous Infusion, Contracture, Crystal Structure, Cysteine Ethyl Ester Tc 99m, Developmental Delay, Developmental Disorders, Electroencephalogram, Electroencephalography, Epilepsy, Epileptic Discharge, Ethosuximide, Eye Tracking, Febrile Convulsion, Female, Frontal Lobe Epilepsy, Gene, Gene Frequency, Genetic Variation, Genetics, Genotype, GRIN2D Protein, Heterozygosity, Home Oxygen Therapy, Human, Human Cell, Hydrogen Bond, Intellectual Impairment, Intelligence Quotient, Intractable Epilepsy, Ketamine, Lacosamide, Lamotrigine, Lennox Gastaut Syndrome, Levetiracetam, Magnetoencephalography, Male, Maternal Hypertension, Melatonin, Migraine, Missense Mutation, Molecular Dynamics, Molecular Dynamics Simulation, Mutation, Myoclonus Seizure, N Methyl Dextro Aspartic Acid Receptor, N Methyl Dextro Aspartic Acid Receptor 2D, N-Methyl-D-Aspartate, Neonatal Pneumonia, Neonatal Respiratory Distress Syndrome, Neuroimaging, Nuclear Magnetic Resonance Imaging, Phenobarbital, Premature Labor, Preschool, Preschool Child, Priority Journal, Protein Conformation, Proximal Interphalangeal Joint, Pyridoxine, Receptors, Respiratory Arrest, Sanger Sequencing, School Child, Single Photon Emission Computed Tomography, Sleep Disordered Breathing, Static Electricity, Stridor, Structure-Activity Relationship, Subglottic Stenosis, Superior Temporal Gyrus, Supramarginal Gyrus, Thiopental, Tonic Seizure, Valproic Acid, Wakefulness, Wechsler Intelligence Scale for Children, Whole Exome Sequencing @article{Tsuchida2018538, title = {GRIN2D variants in three cases of developmental and epileptic encephalopathy}, author = {N Tsuchida and K Hamada and M Shiina and M Kato and Y Kobayashi and J Tohyama and K Kimura and K Hoshino and V Ganesan and K W Teik and M Nakashima and S Mitsuhashi and T Mizuguchi and A Takata and N Miyake and H Saitsu and K Ogata and S Miyatake and N Matsumoto}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056487337&doi=10.1111%2fcge.13454&partnerID=40&md5=f0d32670db57261820bc244943cffd62}, doi = {10.1111/cge.13454}, issn = {00099163}, year = {2018}, date = {2018-01-01}, journal = {Clinical Genetics}, volume = {94}, number = {6}, pages = {538-547}, publisher = {Blackwell Publishing Ltd}, abstract = {N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Recently, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. In this study, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd}, note = {cited By 4}, keywords = {Adolescent, Allele, Amino Acid Sequence, Amino Acid Substitution, Amino Terminal Sequence, Anemia, Antibiotic Agent, Antibiotic Therapy, Article, Atonic Seizure, Attention Deficit Disorder, Autism, Binding Affinity, Brain, Brain Atrophy, Carbamazepine, Case Report, Channel Gating, Chemistry, Children, Clinical Article, Clinical Feature, Clobazam, Clonazepam, Conformational Transition, Continuous Infusion, Contracture, Crystal Structure, Cysteine Ethyl Ester Tc 99m, Developmental Delay, Developmental Disorders, Electroencephalogram, Electroencephalography, Epilepsy, Epileptic Discharge, Ethosuximide, Eye Tracking, Febrile Convulsion, Female, Frontal Lobe Epilepsy, Gene, Gene Frequency, Genetic Variation, Genetics, Genotype, GRIN2D Protein, Heterozygosity, Home Oxygen Therapy, Human, Human Cell, Hydrogen Bond, Intellectual Impairment, Intelligence Quotient, Intractable Epilepsy, Ketamine, Lacosamide, Lamotrigine, Lennox Gastaut Syndrome, Levetiracetam, Magnetoencephalography, Male, Maternal Hypertension, Melatonin, Migraine, Missense Mutation, Molecular Dynamics, Molecular Dynamics Simulation, Mutation, Myoclonus Seizure, N Methyl Dextro Aspartic Acid Receptor, N Methyl Dextro Aspartic Acid Receptor 2D, N-Methyl-D-Aspartate, Neonatal Pneumonia, Neonatal Respiratory Distress Syndrome, Neuroimaging, Nuclear Magnetic Resonance Imaging, Phenobarbital, Premature Labor, Preschool, Preschool Child, Priority Journal, Protein Conformation, Proximal Interphalangeal Joint, Pyridoxine, Receptors, Respiratory Arrest, Sanger Sequencing, School Child, Single Photon Emission Computed Tomography, Sleep Disordered Breathing, Static Electricity, Stridor, Structure-Activity Relationship, Subglottic Stenosis, Superior Temporal Gyrus, Supramarginal Gyrus, Thiopental, Tonic Seizure, Valproic Acid, Wakefulness, Wechsler Intelligence Scale for Children, Whole Exome Sequencing}, pubstate = {published}, tppubtype = {article} } N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Recently, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. In this study, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd |
Thu, Ei H; Hussain, Z; Shuid, A N Current Drug Targets, 19 (8), pp. 865-876, 2018, ISSN: 13894501, (cited By 2). Abstract | Links | BibTeX | Tags: Amisulpride, Amitriptyline, Animals, Antipsychotic Agents, Anxiety, Aripiprazole, Autism, Bioavailability, Biological Availability, Bipolar Disorder, Buspirone, Chemistry, Clonazepam, Clozapine, Depression, Diazepam, Drug Delivery System, Drug Delivery Systems, Duloxetine, Half Life Time, Half-Life, Health Care, Human, Iloperidone, In Vitro Study, In Vivo Study, Mental Disease, Mental Disorders, Midazolam, Nanotechnology, Neuroleptic Agent, Olanzapine, Pathophysiology, Permeability, Physical Chemistry, Psychosis, Review, Risperidone, Schizophrenia, Solubility, Sulpiride, Treatment Outcome, Venlafaxine, Ziprasidone @article{EiThu2018865, title = {New insight in improving therapeutic efficacy of antipsychotic agents: An overview of improved in vitro and in vivo performance, efficacy upgradation and future prospects}, author = {H Ei Thu and Z Hussain and A N Shuid}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048981535&doi=10.2174%2f1389450117666161125174625&partnerID=40&md5=d32e5bc9766ff9d68dd79f082b9ca4bc}, doi = {10.2174/1389450117666161125174625}, issn = {13894501}, year = {2018}, date = {2018-01-01}, journal = {Current Drug Targets}, volume = {19}, number = {8}, pages = {865-876}, publisher = {Bentham Science Publishers B.V.}, abstract = {Psychotic disorders are recognized as severe mental disorders that rigorously affect pa-tient’s personality, critical thinking, and perceptional ability. High prevalence, global dissemination and limitations of conventional pharmacological approaches compel a significant burden to the patient, medical professionals and the healthcare system. To date, numerous orally administered therapies are available for the management of depressive disorders, schizophrenia, anxiety, bipolar disorders and autism spectrum problems. However, poor water solubility, erratic oral absorption, extensive first-pass metabolism, low oral bioavailability and short half-lives are the major factors which limit the pharmaceutical significance and therapeutic feasibility of these agents. In recent decades, nanotechnology-based delivery systems have gained remarkable attention of the researchers to mitigate the pharmaceutical issues related to the antipsychotic therapies and to optimize their oral drug delivery, therapeutic outcomes, and patient compliance. Therefore, the present review was aimed to summarize the available in vitro and in vivo evidences signifying the pharmaceutical importance of the advanced delivery systems in improving the aqueous solubility, transmembrane permeability, oral bioavailability and therapeutic outcome of the antipsychotic agents. © 2018 Bentham Science Publishers.}, note = {cited By 2}, keywords = {Amisulpride, Amitriptyline, Animals, Antipsychotic Agents, Anxiety, Aripiprazole, Autism, Bioavailability, Biological Availability, Bipolar Disorder, Buspirone, Chemistry, Clonazepam, Clozapine, Depression, Diazepam, Drug Delivery System, Drug Delivery Systems, Duloxetine, Half Life Time, Half-Life, Health Care, Human, Iloperidone, In Vitro Study, In Vivo Study, Mental Disease, Mental Disorders, Midazolam, Nanotechnology, Neuroleptic Agent, Olanzapine, Pathophysiology, Permeability, Physical Chemistry, Psychosis, Review, Risperidone, Schizophrenia, Solubility, Sulpiride, Treatment Outcome, Venlafaxine, Ziprasidone}, pubstate = {published}, tppubtype = {article} } Psychotic disorders are recognized as severe mental disorders that rigorously affect pa-tient’s personality, critical thinking, and perceptional ability. High prevalence, global dissemination and limitations of conventional pharmacological approaches compel a significant burden to the patient, medical professionals and the healthcare system. To date, numerous orally administered therapies are available for the management of depressive disorders, schizophrenia, anxiety, bipolar disorders and autism spectrum problems. However, poor water solubility, erratic oral absorption, extensive first-pass metabolism, low oral bioavailability and short half-lives are the major factors which limit the pharmaceutical significance and therapeutic feasibility of these agents. In recent decades, nanotechnology-based delivery systems have gained remarkable attention of the researchers to mitigate the pharmaceutical issues related to the antipsychotic therapies and to optimize their oral drug delivery, therapeutic outcomes, and patient compliance. Therefore, the present review was aimed to summarize the available in vitro and in vivo evidences signifying the pharmaceutical importance of the advanced delivery systems in improving the aqueous solubility, transmembrane permeability, oral bioavailability and therapeutic outcome of the antipsychotic agents. © 2018 Bentham Science Publishers. |
2015 |
Gallagher, D; Voronova, A; Zander, M A; Cancino, G I; Bramall, A; Krause, M P; Abad, C; Tekin, M; Neilsen, P M; Callen, D F; Scherer, S W; Keller, G M; Kaplan, D R; Walz, K; Miller, F D Ankrd11 is a chromatin regulator involved in autism that is essential for neural development Journal Article Developmental Cell, 32 (1), pp. 31-42, 2015, ISSN: 15345807, (cited By 52). Abstract | Links | BibTeX | Tags: Acetylation, Animal Behavior, Animal Cell, Animals, Ankrd11 Protein, Ankyrin, Ankyrin Repeat Domain Containing Protein 11, Article, Autism, Autism Spectrum Disorders, Behaviour, Biological Marker, Blotting, Brain Cell Culture, Cell Culture, Cell Differentiation, Cell Proliferation, Cells, Chemistry, Chromatin, Chromatin Immunoprecipitation, Cultured, DNA Binding Protein, DNA Microarray, DNA-Binding Proteins, Enzyme Activity, Female, Gene, Gene Expression Profiling, Gene Targeting, Genetics, Histone, Histone Acetylation, Histone Acetyltransferase, Histone Deacetylase, Histone Deacetylase 3, Histone Deacetylases, Histones, Human, Human Cell, Immunoprecipitation, Messenger, Messenger RNA, Metabolism, Mice, Mouse, Murinae, Mus, Nerve Cell Differentiation, Nervous System Development, Neurogenesis, Nonhuman, Oligonucleotide Array Sequence Analysis, Pathology, Phenotype, Physiology, Point Mutation, Post-Translational, Priority Journal, Protein Expression, Protein Processing, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Reverse Transcription Polymerase Chain Reaction, RNA, Small Interfering, Small Interfering RNA, Unclassified Drug, Western, Western Blotting @article{Gallagher201531, title = {Ankrd11 is a chromatin regulator involved in autism that is essential for neural development}, author = {D Gallagher and A Voronova and M A Zander and G I Cancino and A Bramall and M P Krause and C Abad and M Tekin and P M Neilsen and D F Callen and S W Scherer and G M Keller and D R Kaplan and K Walz and F D Miller}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922343890&doi=10.1016%2fj.devcel.2014.11.031&partnerID=40&md5=ad7b8bd3ead790f092e1d8a276d4f25c}, doi = {10.1016/j.devcel.2014.11.031}, issn = {15345807}, year = {2015}, date = {2015-01-01}, journal = {Developmental Cell}, volume = {32}, number = {1}, pages = {31-42}, publisher = {Cell Press}, abstract = {Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, andaberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation inthe Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD. © 2015 Elsevier Inc.}, note = {cited By 52}, keywords = {Acetylation, Animal Behavior, Animal Cell, Animals, Ankrd11 Protein, Ankyrin, Ankyrin Repeat Domain Containing Protein 11, Article, Autism, Autism Spectrum Disorders, Behaviour, Biological Marker, Blotting, Brain Cell Culture, Cell Culture, Cell Differentiation, Cell Proliferation, Cells, Chemistry, Chromatin, Chromatin Immunoprecipitation, Cultured, DNA Binding Protein, DNA Microarray, DNA-Binding Proteins, Enzyme Activity, Female, Gene, Gene Expression Profiling, Gene Targeting, Genetics, Histone, Histone Acetylation, Histone Acetyltransferase, Histone Deacetylase, Histone Deacetylase 3, Histone Deacetylases, Histones, Human, Human Cell, Immunoprecipitation, Messenger, Messenger RNA, Metabolism, Mice, Mouse, Murinae, Mus, Nerve Cell Differentiation, Nervous System Development, Neurogenesis, Nonhuman, Oligonucleotide Array Sequence Analysis, Pathology, Phenotype, Physiology, Point Mutation, Post-Translational, Priority Journal, Protein Expression, Protein Processing, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Reverse Transcription Polymerase Chain Reaction, RNA, Small Interfering, Small Interfering RNA, Unclassified Drug, Western, Western Blotting}, pubstate = {published}, tppubtype = {article} } Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, andaberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation inthe Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD. © 2015 Elsevier Inc. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2018 |
GRIN2D variants in three cases of developmental and epileptic encephalopathy Journal Article Clinical Genetics, 94 (6), pp. 538-547, 2018, ISSN: 00099163, (cited By 4). |
Current Drug Targets, 19 (8), pp. 865-876, 2018, ISSN: 13894501, (cited By 2). |
2015 |
Ankrd11 is a chromatin regulator involved in autism that is essential for neural development Journal Article Developmental Cell, 32 (1), pp. 31-42, 2015, ISSN: 15345807, (cited By 52). |