2018 |
Tsuchida, N; Hamada, K; Shiina, M; Kato, M; Kobayashi, Y; Tohyama, J; Kimura, K; Hoshino, K; Ganesan, V; Teik, K W; Nakashima, M; Mitsuhashi, S; Mizuguchi, T; Takata, A; Miyake, N; Saitsu, H; Ogata, K; Miyatake, S; Matsumoto, N GRIN2D variants in three cases of developmental and epileptic encephalopathy Journal Article Clinical Genetics, 94 (6), pp. 538-547, 2018, ISSN: 00099163, (cited By 4). Abstract | Links | BibTeX | Tags: Adolescent, Allele, Amino Acid Sequence, Amino Acid Substitution, Amino Terminal Sequence, Anemia, Antibiotic Agent, Antibiotic Therapy, Article, Atonic Seizure, Attention Deficit Disorder, Autism, Binding Affinity, Brain, Brain Atrophy, Carbamazepine, Case Report, Channel Gating, Chemistry, Children, Clinical Article, Clinical Feature, Clobazam, Clonazepam, Conformational Transition, Continuous Infusion, Contracture, Crystal Structure, Cysteine Ethyl Ester Tc 99m, Developmental Delay, Developmental Disorders, Electroencephalogram, Electroencephalography, Epilepsy, Epileptic Discharge, Ethosuximide, Eye Tracking, Febrile Convulsion, Female, Frontal Lobe Epilepsy, Gene, Gene Frequency, Genetic Variation, Genetics, Genotype, GRIN2D Protein, Heterozygosity, Home Oxygen Therapy, Human, Human Cell, Hydrogen Bond, Intellectual Impairment, Intelligence Quotient, Intractable Epilepsy, Ketamine, Lacosamide, Lamotrigine, Lennox Gastaut Syndrome, Levetiracetam, Magnetoencephalography, Male, Maternal Hypertension, Melatonin, Migraine, Missense Mutation, Molecular Dynamics, Molecular Dynamics Simulation, Mutation, Myoclonus Seizure, N Methyl Dextro Aspartic Acid Receptor, N Methyl Dextro Aspartic Acid Receptor 2D, N-Methyl-D-Aspartate, Neonatal Pneumonia, Neonatal Respiratory Distress Syndrome, Neuroimaging, Nuclear Magnetic Resonance Imaging, Phenobarbital, Premature Labor, Preschool, Preschool Child, Priority Journal, Protein Conformation, Proximal Interphalangeal Joint, Pyridoxine, Receptors, Respiratory Arrest, Sanger Sequencing, School Child, Single Photon Emission Computed Tomography, Sleep Disordered Breathing, Static Electricity, Stridor, Structure-Activity Relationship, Subglottic Stenosis, Superior Temporal Gyrus, Supramarginal Gyrus, Thiopental, Tonic Seizure, Valproic Acid, Wakefulness, Wechsler Intelligence Scale for Children, Whole Exome Sequencing @article{Tsuchida2018538, title = {GRIN2D variants in three cases of developmental and epileptic encephalopathy}, author = {N Tsuchida and K Hamada and M Shiina and M Kato and Y Kobayashi and J Tohyama and K Kimura and K Hoshino and V Ganesan and K W Teik and M Nakashima and S Mitsuhashi and T Mizuguchi and A Takata and N Miyake and H Saitsu and K Ogata and S Miyatake and N Matsumoto}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056487337&doi=10.1111%2fcge.13454&partnerID=40&md5=f0d32670db57261820bc244943cffd62}, doi = {10.1111/cge.13454}, issn = {00099163}, year = {2018}, date = {2018-01-01}, journal = {Clinical Genetics}, volume = {94}, number = {6}, pages = {538-547}, publisher = {Blackwell Publishing Ltd}, abstract = {N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Recently, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. In this study, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd}, note = {cited By 4}, keywords = {Adolescent, Allele, Amino Acid Sequence, Amino Acid Substitution, Amino Terminal Sequence, Anemia, Antibiotic Agent, Antibiotic Therapy, Article, Atonic Seizure, Attention Deficit Disorder, Autism, Binding Affinity, Brain, Brain Atrophy, Carbamazepine, Case Report, Channel Gating, Chemistry, Children, Clinical Article, Clinical Feature, Clobazam, Clonazepam, Conformational Transition, Continuous Infusion, Contracture, Crystal Structure, Cysteine Ethyl Ester Tc 99m, Developmental Delay, Developmental Disorders, Electroencephalogram, Electroencephalography, Epilepsy, Epileptic Discharge, Ethosuximide, Eye Tracking, Febrile Convulsion, Female, Frontal Lobe Epilepsy, Gene, Gene Frequency, Genetic Variation, Genetics, Genotype, GRIN2D Protein, Heterozygosity, Home Oxygen Therapy, Human, Human Cell, Hydrogen Bond, Intellectual Impairment, Intelligence Quotient, Intractable Epilepsy, Ketamine, Lacosamide, Lamotrigine, Lennox Gastaut Syndrome, Levetiracetam, Magnetoencephalography, Male, Maternal Hypertension, Melatonin, Migraine, Missense Mutation, Molecular Dynamics, Molecular Dynamics Simulation, Mutation, Myoclonus Seizure, N Methyl Dextro Aspartic Acid Receptor, N Methyl Dextro Aspartic Acid Receptor 2D, N-Methyl-D-Aspartate, Neonatal Pneumonia, Neonatal Respiratory Distress Syndrome, Neuroimaging, Nuclear Magnetic Resonance Imaging, Phenobarbital, Premature Labor, Preschool, Preschool Child, Priority Journal, Protein Conformation, Proximal Interphalangeal Joint, Pyridoxine, Receptors, Respiratory Arrest, Sanger Sequencing, School Child, Single Photon Emission Computed Tomography, Sleep Disordered Breathing, Static Electricity, Stridor, Structure-Activity Relationship, Subglottic Stenosis, Superior Temporal Gyrus, Supramarginal Gyrus, Thiopental, Tonic Seizure, Valproic Acid, Wakefulness, Wechsler Intelligence Scale for Children, Whole Exome Sequencing}, pubstate = {published}, tppubtype = {article} } N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Recently, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. In this study, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd |
2017 |
Shuib, S; Saaid, N N; Zakaria, Z; Ismail, J; Latiff, Abdul Z Duplication 17p11.2 (Potocki-Lupski syndrome) in a child with developmental delay Journal Article Malaysian Journal of Pathology, 39 (1), pp. 77-81, 2017, ISSN: 01268635, (cited By 0). Abstract | Links | BibTeX | Tags: Abnormalities, Agarose, Article, Autism, Autism Spectrum Disorders, Blood Culture, Case Report, Children, Chromosome 17, Chromosome Analysis, Chromosome Disorder, Chromosome Duplication, Chromosomes, Clinical Article, Comparative Genomic Hybridization, Developmental Delay, Electrophoresis, Female, Fluorescence, Fluorescence in Situ Hybridization, Gene, Gene Identification, Genetics, Genomic DNA, Human, In Situ Hybridization, Lymphocyte Culture, Microarray Analysis, Multiple, Multiple Malformation Syndrome, Pair 17, Phenotype, Potocki Lupski Syndrome, Preschool, Preschool Child, Procedures, RAI1 Gene, Ultraviolet Spectrophotometry @article{Shuib201777, title = {Duplication 17p11.2 (Potocki-Lupski syndrome) in a child with developmental delay}, author = {S Shuib and N N Saaid and Z Zakaria and J Ismail and Z Abdul Latiff}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85037028880&partnerID=40&md5=624b87d1e9ebac2d1bf66b4d30c0f6e9}, issn = {01268635}, year = {2017}, date = {2017-01-01}, journal = {Malaysian Journal of Pathology}, volume = {39}, number = {1}, pages = {77-81}, publisher = {Malaysian Society of Pathologists}, abstract = {Potocki-Lupski syndrome (PTLS), also known as duplication 17p11.2 syndrome, trisomy 17p11.2 or dup(17)(p11.2p11.2) syndrome, is a developmental disorder and a rare contiguous gene syndrome affecting 1 in 20,000 live births. Among the key features of such patients are autism spectrum disorder, learning disabilities, developmental delay, attention-deficit disorder, infantile hypotonia and cardiovascular abnormalities. Previous studies using microarray identified variations in the size and extent of the duplicated region of chromosome 17p11.2. However, there are a few genes which are considered as candidates for PTLS which include RAI1, SREBF1, DRG2, LLGL1, SHMT1 and ZFP179. In this report, we investigated a case of a 3-year-old girl who has developmental delay. Her chromosome analysis showed a normal karyotype (46,XX). Analysis using array CGH (4X44 K, Agilent USA) identified an ~4.2 Mb de novo duplication in chromosome 17p11.2. The result was confirmed by fluorescence in situ hybridization (FISH) using probes in the critical PTLS region. This report demonstrates the importance of microarray and FISH in the diagnosis of PTLS. © 2017, Malaysian Society of Pathologists. All rights reserved.}, note = {cited By 0}, keywords = {Abnormalities, Agarose, Article, Autism, Autism Spectrum Disorders, Blood Culture, Case Report, Children, Chromosome 17, Chromosome Analysis, Chromosome Disorder, Chromosome Duplication, Chromosomes, Clinical Article, Comparative Genomic Hybridization, Developmental Delay, Electrophoresis, Female, Fluorescence, Fluorescence in Situ Hybridization, Gene, Gene Identification, Genetics, Genomic DNA, Human, In Situ Hybridization, Lymphocyte Culture, Microarray Analysis, Multiple, Multiple Malformation Syndrome, Pair 17, Phenotype, Potocki Lupski Syndrome, Preschool, Preschool Child, Procedures, RAI1 Gene, Ultraviolet Spectrophotometry}, pubstate = {published}, tppubtype = {article} } Potocki-Lupski syndrome (PTLS), also known as duplication 17p11.2 syndrome, trisomy 17p11.2 or dup(17)(p11.2p11.2) syndrome, is a developmental disorder and a rare contiguous gene syndrome affecting 1 in 20,000 live births. Among the key features of such patients are autism spectrum disorder, learning disabilities, developmental delay, attention-deficit disorder, infantile hypotonia and cardiovascular abnormalities. Previous studies using microarray identified variations in the size and extent of the duplicated region of chromosome 17p11.2. However, there are a few genes which are considered as candidates for PTLS which include RAI1, SREBF1, DRG2, LLGL1, SHMT1 and ZFP179. In this report, we investigated a case of a 3-year-old girl who has developmental delay. Her chromosome analysis showed a normal karyotype (46,XX). Analysis using array CGH (4X44 K, Agilent USA) identified an ~4.2 Mb de novo duplication in chromosome 17p11.2. The result was confirmed by fluorescence in situ hybridization (FISH) using probes in the critical PTLS region. This report demonstrates the importance of microarray and FISH in the diagnosis of PTLS. © 2017, Malaysian Society of Pathologists. All rights reserved. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2018 |
GRIN2D variants in three cases of developmental and epileptic encephalopathy Journal Article Clinical Genetics, 94 (6), pp. 538-547, 2018, ISSN: 00099163, (cited By 4). |
2017 |
Duplication 17p11.2 (Potocki-Lupski syndrome) in a child with developmental delay Journal Article Malaysian Journal of Pathology, 39 (1), pp. 77-81, 2017, ISSN: 01268635, (cited By 0). |