2019 |
Prabhakar, S; Cheah, P S; Zhang, X; Zinter, M; Gianatasio, M; Hudry, E; Bronson, R T; Kwiatkowski, D J; Stemmer-Rachamimov, A; Maguire, C A; Sena-Esteves, M; Tannous, B A; Breakefield, X O Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1 Journal Article Molecular Therapy - Methods and Clinical Development, 15 , pp. 18-26, 2019, ISSN: 23290501, (cited By 2). Abstract | Links | BibTeX | Tags: Adeno Associated Virus, Adeno Associated Virus Vector, Animal Experiment, Animal Model, Article, Beta Actin, Blood Brain Barrier, Body Weight, Body Weight Gain, Brain Nerve Cell, Brain Ventricle, Cell Proliferation, Complementary DNA, Controlled Study, Cre Recombinase, Drug Efficacy, Female, Gene, Gene Replacement Therapy, Hamartin, HEK293 Cell Line, Hydrocephalus, Immunohistochemistry, Inverted Terminal Repeat, Long Term Care, Male, Motor Activity, Motor Performance, Mouse, Nonhuman, Priority Journal, Promoter Region, Protein Function, Protein Phosphorylation, Quantitative Analysis, Subventricular Zone, Survival Time, Tuberous Sclerosis, Tuberous Sclerosis Type 1, Vascularization, Viral Gene Delivery System @article{Prabhakar201918, title = {Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1}, author = {S Prabhakar and P S Cheah and X Zhang and M Zinter and M Gianatasio and E Hudry and R T Bronson and D J Kwiatkowski and A Stemmer-Rachamimov and C A Maguire and M Sena-Esteves and B A Tannous and X O Breakefield}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070908794&doi=10.1016%2fj.omtm.2019.08.003&partnerID=40&md5=b169187dde0d3b05f8a9d5295a4ad8c4}, doi = {10.1016/j.omtm.2019.08.003}, issn = {23290501}, year = {2019}, date = {2019-01-01}, journal = {Molecular Therapy - Methods and Clinical Development}, volume = {15}, pages = {18-26}, publisher = {Cell Press}, abstract = {Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome caused by mutations in TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins act as a complex that inhibits mammalian target of rapamycin (mTOR)-mediated cell growth and proliferation. Loss of either protein leads to overgrowth in many organs, including subependymal nodules, subependymal giant cell astrocytomas, and cortical tubers in the human brain. Neurological manifestations in TSC include intellectual disability, autism, hydrocephalus, and epilepsy. In a stochastic mouse model of TSC1 brain lesions, complete loss of Tsc1 is achieved in homozygous Tsc1-floxed mice in a subpopulation of neural cells in the brain by intracerebroventricular (i.c.v.) injection at birth of an adeno-associated virus (AAV) vector encoding Cre recombinase. This results in median survival of 38 days and brain pathology, including subependymal lesions and enlargement of neuronal cells. Remarkably, when these mice were injected intravenously on day 21 with an AAV9 vector encoding hamartin, most survived at least up to 429 days in apparently healthy condition with marked reduction in brain pathology. Thus, a single intravenous administration of an AAV vector encoding hamartin restored protein function in enough cells in the brain to extend lifespan in this TSC1 mouse model. © 2019}, note = {cited By 2}, keywords = {Adeno Associated Virus, Adeno Associated Virus Vector, Animal Experiment, Animal Model, Article, Beta Actin, Blood Brain Barrier, Body Weight, Body Weight Gain, Brain Nerve Cell, Brain Ventricle, Cell Proliferation, Complementary DNA, Controlled Study, Cre Recombinase, Drug Efficacy, Female, Gene, Gene Replacement Therapy, Hamartin, HEK293 Cell Line, Hydrocephalus, Immunohistochemistry, Inverted Terminal Repeat, Long Term Care, Male, Motor Activity, Motor Performance, Mouse, Nonhuman, Priority Journal, Promoter Region, Protein Function, Protein Phosphorylation, Quantitative Analysis, Subventricular Zone, Survival Time, Tuberous Sclerosis, Tuberous Sclerosis Type 1, Vascularization, Viral Gene Delivery System}, pubstate = {published}, tppubtype = {article} } Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome caused by mutations in TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins act as a complex that inhibits mammalian target of rapamycin (mTOR)-mediated cell growth and proliferation. Loss of either protein leads to overgrowth in many organs, including subependymal nodules, subependymal giant cell astrocytomas, and cortical tubers in the human brain. Neurological manifestations in TSC include intellectual disability, autism, hydrocephalus, and epilepsy. In a stochastic mouse model of TSC1 brain lesions, complete loss of Tsc1 is achieved in homozygous Tsc1-floxed mice in a subpopulation of neural cells in the brain by intracerebroventricular (i.c.v.) injection at birth of an adeno-associated virus (AAV) vector encoding Cre recombinase. This results in median survival of 38 days and brain pathology, including subependymal lesions and enlargement of neuronal cells. Remarkably, when these mice were injected intravenously on day 21 with an AAV9 vector encoding hamartin, most survived at least up to 429 days in apparently healthy condition with marked reduction in brain pathology. Thus, a single intravenous administration of an AAV vector encoding hamartin restored protein function in enough cells in the brain to extend lifespan in this TSC1 mouse model. © 2019 |
2015 |
Alwi, N; Harun, D; Leonard, J H Clinical application of sensory integration therapy for children with autism Journal Article Egyptian Journal of Medical Human Genetics, 16 (4), pp. 393-394, 2015, ISSN: 11108630, (cited By 1). Links | BibTeX | Tags: Autism, Disease Severity, Groups by Age, Human, Letter, Motor Performance, Outcome Assessment, Sensorimotor Integration, Therapy, Therapy Effect, Treatment Indication, Treatment Response @article{Alwi2015393, title = {Clinical application of sensory integration therapy for children with autism}, author = {N Alwi and D Harun and J H Leonard}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940898525&doi=10.1016%2fj.ejmhg.2015.05.009&partnerID=40&md5=5548f0db22520a480f09da9aaf4c872e}, doi = {10.1016/j.ejmhg.2015.05.009}, issn = {11108630}, year = {2015}, date = {2015-01-01}, journal = {Egyptian Journal of Medical Human Genetics}, volume = {16}, number = {4}, pages = {393-394}, publisher = {Egyptian Society of Human Genetics}, note = {cited By 1}, keywords = {Autism, Disease Severity, Groups by Age, Human, Letter, Motor Performance, Outcome Assessment, Sensorimotor Integration, Therapy, Therapy Effect, Treatment Indication, Treatment Response}, pubstate = {published}, tppubtype = {article} } |
2013 |
Assaf, M; Hyatt, C J; Wong, C G; Johnson, M R; Schultz, R T; Hendler, T; Pearlson, G D Mentalizing and motivation neural function during social interactions in autism spectrum disorders Journal Article NeuroImage: Clinical, 3 , pp. 321-331, 2013, ISSN: 22131582, (cited By 28). Abstract | Links | BibTeX | Tags: Adolescent, Adult, Article, Autism, Brain Function, Children, Computer, Controlled Study, Female, Functional Magnetic Resonance Imaging, Games, Groups by Age, Human, Major Clinical Study, Male, Mental Capacity, Middle Temporal Gyrus, Motivation, Motor Performance, Nerve Cell, Nerve Function, Nucleus Accumbens, Priority Journal, Punishment, Reward, School Child, Social Cognition, Social Environment, Social Interactions, Task Performance, Theory of Mind, Vision @article{Assaf2013321, title = {Mentalizing and motivation neural function during social interactions in autism spectrum disorders}, author = {M Assaf and C J Hyatt and C G Wong and M R Johnson and R T Schultz and T Hendler and G D Pearlson}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885394367&doi=10.1016%2fj.nicl.2013.09.005&partnerID=40&md5=b63630c997b658167792266e40e855b6}, doi = {10.1016/j.nicl.2013.09.005}, issn = {22131582}, year = {2013}, date = {2013-01-01}, journal = {NeuroImage: Clinical}, volume = {3}, pages = {321-331}, abstract = {Autism Spectrum Disorders (ASDs) are characterized by core deficits in social functions. Two theories have been suggested to explain these deficits: mind-blindness theory posits impaired mentalizing processes (i.e. decreased ability for establishing a representation of others' state of mind), while social motivation theory proposes that diminished reward value for social information leads to reduced social attention, social interactions, and social learning. Mentalizing and motivation are integral to typical social interactions, and neuroimaging evidence points to independent brain networks that support these processes in healthy individuals. However, the simultaneous function of these networks has not been explored in individuals with ASDs. We used a social, interactive fMRI task, the Domino game, to explore mentalizing- and motivation-related brain activation during a well-defined interval where participants respond to rewards or punishments (i.e. motivation) and concurrently process information about their opponent's potential next actions (i.e. mentalizing). Thirteen individuals with high-functioning ASDs, ages 12-24, and 14 healthy controls played fMRI Domino games against a computer-opponent and separately, what they were led to believe was a human-opponent. Results showed that while individuals with ASDs understood the game rules and played similarly to controls, they showed diminished neural activity during the human-opponent runs only (i.e. in a social context) in bilateral middle temporal gyrus (MTG) during mentalizing and right Nucleus Accumbens (NAcc) during reward-related motivation (Pcluster < 0.05 FWE). Importantly, deficits were not observed in these areas when playing against a computer-opponent or in areas related to motor and visual processes. These results demonstrate that while MTG and NAcc, which are critical structures in the mentalizing and motivation networks, respectively, activate normally in a non-social context, they fail to respond in an otherwise identical social context in ASD compared to controls. We discuss implications to both the mind-blindness and social motivation theories of ASD and the importance of social context in research and treatment protocols. © 2013 The Authors.}, note = {cited By 28}, keywords = {Adolescent, Adult, Article, Autism, Brain Function, Children, Computer, Controlled Study, Female, Functional Magnetic Resonance Imaging, Games, Groups by Age, Human, Major Clinical Study, Male, Mental Capacity, Middle Temporal Gyrus, Motivation, Motor Performance, Nerve Cell, Nerve Function, Nucleus Accumbens, Priority Journal, Punishment, Reward, School Child, Social Cognition, Social Environment, Social Interactions, Task Performance, Theory of Mind, Vision}, pubstate = {published}, tppubtype = {article} } Autism Spectrum Disorders (ASDs) are characterized by core deficits in social functions. Two theories have been suggested to explain these deficits: mind-blindness theory posits impaired mentalizing processes (i.e. decreased ability for establishing a representation of others' state of mind), while social motivation theory proposes that diminished reward value for social information leads to reduced social attention, social interactions, and social learning. Mentalizing and motivation are integral to typical social interactions, and neuroimaging evidence points to independent brain networks that support these processes in healthy individuals. However, the simultaneous function of these networks has not been explored in individuals with ASDs. We used a social, interactive fMRI task, the Domino game, to explore mentalizing- and motivation-related brain activation during a well-defined interval where participants respond to rewards or punishments (i.e. motivation) and concurrently process information about their opponent's potential next actions (i.e. mentalizing). Thirteen individuals with high-functioning ASDs, ages 12-24, and 14 healthy controls played fMRI Domino games against a computer-opponent and separately, what they were led to believe was a human-opponent. Results showed that while individuals with ASDs understood the game rules and played similarly to controls, they showed diminished neural activity during the human-opponent runs only (i.e. in a social context) in bilateral middle temporal gyrus (MTG) during mentalizing and right Nucleus Accumbens (NAcc) during reward-related motivation (Pcluster < 0.05 FWE). Importantly, deficits were not observed in these areas when playing against a computer-opponent or in areas related to motor and visual processes. These results demonstrate that while MTG and NAcc, which are critical structures in the mentalizing and motivation networks, respectively, activate normally in a non-social context, they fail to respond in an otherwise identical social context in ASD compared to controls. We discuss implications to both the mind-blindness and social motivation theories of ASD and the importance of social context in research and treatment protocols. © 2013 The Authors. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2019 |
Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1 Journal Article Molecular Therapy - Methods and Clinical Development, 15 , pp. 18-26, 2019, ISSN: 23290501, (cited By 2). |
2015 |
Clinical application of sensory integration therapy for children with autism Journal Article Egyptian Journal of Medical Human Genetics, 16 (4), pp. 393-394, 2015, ISSN: 11108630, (cited By 1). |
2013 |
Mentalizing and motivation neural function during social interactions in autism spectrum disorders Journal Article NeuroImage: Clinical, 3 , pp. 321-331, 2013, ISSN: 22131582, (cited By 28). |