2019 |
Abdullah, A A; Rijal, S; Dash, S R Evaluation on Machine Learning Algorithms for Classification of Autism Spectrum Disorder (ASD) Conference 1372 (1), Institute of Physics Publishing, 2019, ISSN: 17426588, (cited By 0). Abstract | Links | BibTeX | Tags: Autism Spectrum Disorders, Behaviour Evaluations, Biomedical Engineering, Brain Mapping, Classification (of information), Decision Trees, Diseases, Feature Extraction, Feature Selection Methods, K Fold Cross Validations, Learning, Least Absolute Shrinkage and Selection Operators, Least Squares Approximations, Logistic Regressions, Machine Learning, Machine Learning Methods, Magnetic Resonance Imaging, Nearest Neighbor Search, Regression Analysis, Supervised Learning, Supervised Machine Learning @conference{Abdullah2019, title = {Evaluation on Machine Learning Algorithms for Classification of Autism Spectrum Disorder (ASD)}, author = {A A Abdullah and S Rijal and S R Dash}, editor = {Rahim Mustafa Zaaba Norali Noor S B A N B S K A N B A B M Fook C.Y. Yazid H.B.}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076493636&doi=10.1088%2f1742-6596%2f1372%2f1%2f012052&partnerID=40&md5=2ec1bd9f6cf1e3afe965cc9e3792f536}, doi = {10.1088/1742-6596/1372/1/012052}, issn = {17426588}, year = {2019}, date = {2019-01-01}, journal = {Journal of Physics: Conference Series}, volume = {1372}, number = {1}, publisher = {Institute of Physics Publishing}, abstract = {Autism Spectrum Disorder (ASD) was characterized by delay in social interactions development, repetitive behaviors and narrow interest, which usually diagnosed with standard diagnostic tools such as Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADIR-R). Previous work has implemented machine-learning methods for the classification of ASD, however they used different types of dataset such as brain images for MRI and EEG, risk genes in genetic profiles and behavior evaluation based on ADOS and ADI-R. Here a trial on using Autism Spectrum Questions (AQ) to build models that have higher potential to classify ASD was developed. In this research, Chi-square and Least Absolute Shrinkage and Selection Operator (LASSO) have been selected as feature selection methods to select the most important features for 3 supervised machine learning algorithms, which are Random Forest, Logistic Regression and K-Nearest Neighbors with K-fold cross validation. The performance was evaluated in which results Logistic Regression scored the highest accuracy with 97.541% using model with 13 selected features based on Chi-square selection method. © 2019 IOP Publishing Ltd. All rights reserved.}, note = {cited By 0}, keywords = {Autism Spectrum Disorders, Behaviour Evaluations, Biomedical Engineering, Brain Mapping, Classification (of information), Decision Trees, Diseases, Feature Extraction, Feature Selection Methods, K Fold Cross Validations, Learning, Least Absolute Shrinkage and Selection Operators, Least Squares Approximations, Logistic Regressions, Machine Learning, Machine Learning Methods, Magnetic Resonance Imaging, Nearest Neighbor Search, Regression Analysis, Supervised Learning, Supervised Machine Learning}, pubstate = {published}, tppubtype = {conference} } Autism Spectrum Disorder (ASD) was characterized by delay in social interactions development, repetitive behaviors and narrow interest, which usually diagnosed with standard diagnostic tools such as Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADIR-R). Previous work has implemented machine-learning methods for the classification of ASD, however they used different types of dataset such as brain images for MRI and EEG, risk genes in genetic profiles and behavior evaluation based on ADOS and ADI-R. Here a trial on using Autism Spectrum Questions (AQ) to build models that have higher potential to classify ASD was developed. In this research, Chi-square and Least Absolute Shrinkage and Selection Operator (LASSO) have been selected as feature selection methods to select the most important features for 3 supervised machine learning algorithms, which are Random Forest, Logistic Regression and K-Nearest Neighbors with K-fold cross validation. The performance was evaluated in which results Logistic Regression scored the highest accuracy with 97.541% using model with 13 selected features based on Chi-square selection method. © 2019 IOP Publishing Ltd. All rights reserved. |
2011 |
Razali, N; Wahab, A 2D Affective Space Model (ASM) for detecting autistic children Conference 2011, ISBN: 9781612848433, (cited By 8). Abstract | Links | BibTeX | Tags: Autistic Children, Brain Disorders, Brain Imaging, Brain Imaging Techniques, Brain Signals, Children with Autism, Consumer Electronics, Data Collection, Diseases, Electroencephalogram, Electroencephalography, Feature Extraction, Frequency Domains, Functional Magnetic Resonance Imaging, Gaussian Mixture Model, Magnetic Resonance Imaging, Multi Layer Perceptron, Multilayer Perceptron, Multilayers, Positron Emission Tomography, Resonance, Space Models, Verification Results @conference{Razali2011536, title = {2D Affective Space Model (ASM) for detecting autistic children}, author = {N Razali and A Wahab}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052392399&doi=10.1109%2fISCE.2011.5973888&partnerID=40&md5=f6ea401148e6558b861e4df6407e527e}, doi = {10.1109/ISCE.2011.5973888}, isbn = {9781612848433}, year = {2011}, date = {2011-01-01}, journal = {Proceedings of the International Symposium on Consumer Electronics, ISCE}, pages = {536-541}, abstract = {There are many research works have been done on autism cases using brain imaging techniques. In this paper, the Electroencephalogram (EEG) was used to understand and analyze the functionality of the brain to identify or detect brain disorder for autism in term of motor imitation. Thus, the portability and affordability of the EEG equipment makes it a better choice in comparison with other brain imaging device such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and megnetoencephalography (MEG). Data collection consists of both autistic and normal children with the total of 6 children for each group. All subjects were asked to clinch their hand by following video stimuli which presented in 1 minute time. Gaussian mixture model was used as a method of feature extraction for analyzing the brain signals in frequency domain. Then, the extraction data were classified using multilayer perceptron (MLP). According to the verification result, the percentage of discriminating between both groups is up to 85% in average by using k-fold validation. © 2011 IEEE.}, note = {cited By 8}, keywords = {Autistic Children, Brain Disorders, Brain Imaging, Brain Imaging Techniques, Brain Signals, Children with Autism, Consumer Electronics, Data Collection, Diseases, Electroencephalogram, Electroencephalography, Feature Extraction, Frequency Domains, Functional Magnetic Resonance Imaging, Gaussian Mixture Model, Magnetic Resonance Imaging, Multi Layer Perceptron, Multilayer Perceptron, Multilayers, Positron Emission Tomography, Resonance, Space Models, Verification Results}, pubstate = {published}, tppubtype = {conference} } There are many research works have been done on autism cases using brain imaging techniques. In this paper, the Electroencephalogram (EEG) was used to understand and analyze the functionality of the brain to identify or detect brain disorder for autism in term of motor imitation. Thus, the portability and affordability of the EEG equipment makes it a better choice in comparison with other brain imaging device such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and megnetoencephalography (MEG). Data collection consists of both autistic and normal children with the total of 6 children for each group. All subjects were asked to clinch their hand by following video stimuli which presented in 1 minute time. Gaussian mixture model was used as a method of feature extraction for analyzing the brain signals in frequency domain. Then, the extraction data were classified using multilayer perceptron (MLP). According to the verification result, the percentage of discriminating between both groups is up to 85% in average by using k-fold validation. © 2011 IEEE. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2019 |
Evaluation on Machine Learning Algorithms for Classification of Autism Spectrum Disorder (ASD) Conference 1372 (1), Institute of Physics Publishing, 2019, ISSN: 17426588, (cited By 0). |
2011 |
2D Affective Space Model (ASM) for detecting autistic children Conference 2011, ISBN: 9781612848433, (cited By 8). |