2011 |
Razali, N; Wahab, A 2D Affective Space Model (ASM) for detecting autistic children Conference 2011, ISBN: 9781612848433, (cited By 8). Abstract | Links | BibTeX | Tags: Autistic Children, Brain Disorders, Brain Imaging, Brain Imaging Techniques, Brain Signals, Children with Autism, Consumer Electronics, Data Collection, Diseases, Electroencephalogram, Electroencephalography, Feature Extraction, Frequency Domains, Functional Magnetic Resonance Imaging, Gaussian Mixture Model, Magnetic Resonance Imaging, Multi Layer Perceptron, Multilayer Perceptron, Multilayers, Positron Emission Tomography, Resonance, Space Models, Verification Results @conference{Razali2011536, title = {2D Affective Space Model (ASM) for detecting autistic children}, author = {N Razali and A Wahab}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052392399&doi=10.1109%2fISCE.2011.5973888&partnerID=40&md5=f6ea401148e6558b861e4df6407e527e}, doi = {10.1109/ISCE.2011.5973888}, isbn = {9781612848433}, year = {2011}, date = {2011-01-01}, journal = {Proceedings of the International Symposium on Consumer Electronics, ISCE}, pages = {536-541}, abstract = {There are many research works have been done on autism cases using brain imaging techniques. In this paper, the Electroencephalogram (EEG) was used to understand and analyze the functionality of the brain to identify or detect brain disorder for autism in term of motor imitation. Thus, the portability and affordability of the EEG equipment makes it a better choice in comparison with other brain imaging device such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and megnetoencephalography (MEG). Data collection consists of both autistic and normal children with the total of 6 children for each group. All subjects were asked to clinch their hand by following video stimuli which presented in 1 minute time. Gaussian mixture model was used as a method of feature extraction for analyzing the brain signals in frequency domain. Then, the extraction data were classified using multilayer perceptron (MLP). According to the verification result, the percentage of discriminating between both groups is up to 85% in average by using k-fold validation. © 2011 IEEE.}, note = {cited By 8}, keywords = {Autistic Children, Brain Disorders, Brain Imaging, Brain Imaging Techniques, Brain Signals, Children with Autism, Consumer Electronics, Data Collection, Diseases, Electroencephalogram, Electroencephalography, Feature Extraction, Frequency Domains, Functional Magnetic Resonance Imaging, Gaussian Mixture Model, Magnetic Resonance Imaging, Multi Layer Perceptron, Multilayer Perceptron, Multilayers, Positron Emission Tomography, Resonance, Space Models, Verification Results}, pubstate = {published}, tppubtype = {conference} } There are many research works have been done on autism cases using brain imaging techniques. In this paper, the Electroencephalogram (EEG) was used to understand and analyze the functionality of the brain to identify or detect brain disorder for autism in term of motor imitation. Thus, the portability and affordability of the EEG equipment makes it a better choice in comparison with other brain imaging device such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and megnetoencephalography (MEG). Data collection consists of both autistic and normal children with the total of 6 children for each group. All subjects were asked to clinch their hand by following video stimuli which presented in 1 minute time. Gaussian mixture model was used as a method of feature extraction for analyzing the brain signals in frequency domain. Then, the extraction data were classified using multilayer perceptron (MLP). According to the verification result, the percentage of discriminating between both groups is up to 85% in average by using k-fold validation. © 2011 IEEE. |
2010 |
Razali, N; Rahman, A W A Motor movement for autism spectrum disorder (ASD) detection Conference 2010, ISBN: 9789791948913, (cited By 3). Abstract | Links | BibTeX | Tags: Autism, Autism Spectrum Disorders, Autistic Children, Children with Autism, Data Collection, Diseases, Early Detection, Early Intervention, Finger Tapping, Gaussian Mixture Model, Information Technology, Motor Movements, Multi Layer Perceptron, Multilayer Perceptron (MLP), Multilayers @conference{Razali2010, title = {Motor movement for autism spectrum disorder (ASD) detection}, author = {N Razali and A W A Rahman}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052346152&doi=10.1109%2fICT4M.2010.5971921&partnerID=40&md5=234cdd8f3906ad980ed163a1036215ee}, doi = {10.1109/ICT4M.2010.5971921}, isbn = {9789791948913}, year = {2010}, date = {2010-01-01}, journal = {Proceeding of the 3rd International Conference on Information and Communication Technology for the Moslem World: ICT Connecting Cultures, ICT4M 2010}, pages = {E90-E95}, abstract = {In this paper, we are looking at the differences between autistic and normal children in term of fine motor movement. Previous findings have shown that there are differences between autistic children and normal children when performing a simple motor movement tasks. Imitating a finger tapping and clinching a hand are two examples of a simple motor movement tasks. Our study had adopted one of the video stimuli for clinching the hand from Brainmarkers. 6 selected autistic children and 6 selected normal children were involved in this study. The data collection is using EEG device and will be analyzed using Gaussian mixture model (GMM) and Multilayer perceptron (MLP) as classifier to discriminate between autistic and normal children. Experimental result shows the potential of verifying between autistic and normal children with accuracy of 92%. The potential of using these techniques to identify autistic children can help early detection for the purpose of early intervention. Moreover, the spectrums of the signals also present big differences between the two groups. © 2010 IEEE.}, note = {cited By 3}, keywords = {Autism, Autism Spectrum Disorders, Autistic Children, Children with Autism, Data Collection, Diseases, Early Detection, Early Intervention, Finger Tapping, Gaussian Mixture Model, Information Technology, Motor Movements, Multi Layer Perceptron, Multilayer Perceptron (MLP), Multilayers}, pubstate = {published}, tppubtype = {conference} } In this paper, we are looking at the differences between autistic and normal children in term of fine motor movement. Previous findings have shown that there are differences between autistic children and normal children when performing a simple motor movement tasks. Imitating a finger tapping and clinching a hand are two examples of a simple motor movement tasks. Our study had adopted one of the video stimuli for clinching the hand from Brainmarkers. 6 selected autistic children and 6 selected normal children were involved in this study. The data collection is using EEG device and will be analyzed using Gaussian mixture model (GMM) and Multilayer perceptron (MLP) as classifier to discriminate between autistic and normal children. Experimental result shows the potential of verifying between autistic and normal children with accuracy of 92%. The potential of using these techniques to identify autistic children can help early detection for the purpose of early intervention. Moreover, the spectrums of the signals also present big differences between the two groups. © 2010 IEEE. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2011 |
2D Affective Space Model (ASM) for detecting autistic children Conference 2011, ISBN: 9781612848433, (cited By 8). |
2010 |
Motor movement for autism spectrum disorder (ASD) detection Conference 2010, ISBN: 9789791948913, (cited By 3). |