2012 |
Hoole, P R P; Pirapaharan, K; Basar, S A; Ismail, R; Liyanage, D L D A; Senanayake, S S H M U L; Hoole, S R H Autism, EEG and brain electromagnetics research Conference 2012, ISBN: 9781467316668, (cited By 11). Abstract | Links | BibTeX | Tags: Biomedical Engineering, Brain, Brain Regions, Classification Accuracy, Diseases, EEG Signals, Electromagnetic Signals, Electromagnetics, Electromagnetism, Frequency Domains, International Group, Multilayer Perception Neural Networks, Neuroimaging, Principal Component Analysis @conference{Hoole2012541, title = {Autism, EEG and brain electromagnetics research}, author = {P R P Hoole and K Pirapaharan and S A Basar and R Ismail and D L D A Liyanage and S S H M U L Senanayake and S R H Hoole}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876771339&doi=10.1109%2fIECBES.2012.6498036&partnerID=40&md5=9f9390b30b859a90936c66699c1a5115}, doi = {10.1109/IECBES.2012.6498036}, isbn = {9781467316668}, year = {2012}, date = {2012-01-01}, journal = {2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2012}, pages = {541-543}, abstract = {There has been a significant increase in the incidence of autism. We report the work on autism by our international group, on the growing attention paid to EEG based diagnosis and the interest in tracing EEG changes to brain electromagnetic signals (BEMS), seeking the cause of autism and the brain regions of its origin. The time- and frequency domain and principal component analysis (PCA) of these EEG signals with a Multilayer Perception Neural Network (MLP) identifies an autistic subject and helps improve classification accuracy. We show differences between a working brain and a relaxed brain, especially in the Alpha waves used for diagnosis. © 2012 IEEE.}, note = {cited By 11}, keywords = {Biomedical Engineering, Brain, Brain Regions, Classification Accuracy, Diseases, EEG Signals, Electromagnetic Signals, Electromagnetics, Electromagnetism, Frequency Domains, International Group, Multilayer Perception Neural Networks, Neuroimaging, Principal Component Analysis}, pubstate = {published}, tppubtype = {conference} } There has been a significant increase in the incidence of autism. We report the work on autism by our international group, on the growing attention paid to EEG based diagnosis and the interest in tracing EEG changes to brain electromagnetic signals (BEMS), seeking the cause of autism and the brain regions of its origin. The time- and frequency domain and principal component analysis (PCA) of these EEG signals with a Multilayer Perception Neural Network (MLP) identifies an autistic subject and helps improve classification accuracy. We show differences between a working brain and a relaxed brain, especially in the Alpha waves used for diagnosis. © 2012 IEEE. |
2011 |
Razali, N; Wahab, A 2D Affective Space Model (ASM) for detecting autistic children Conference 2011, ISBN: 9781612848433, (cited By 8). Abstract | Links | BibTeX | Tags: Autistic Children, Brain Disorders, Brain Imaging, Brain Imaging Techniques, Brain Signals, Children with Autism, Consumer Electronics, Data Collection, Diseases, Electroencephalogram, Electroencephalography, Feature Extraction, Frequency Domains, Functional Magnetic Resonance Imaging, Gaussian Mixture Model, Magnetic Resonance Imaging, Multi Layer Perceptron, Multilayer Perceptron, Multilayers, Positron Emission Tomography, Resonance, Space Models, Verification Results @conference{Razali2011536, title = {2D Affective Space Model (ASM) for detecting autistic children}, author = {N Razali and A Wahab}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052392399&doi=10.1109%2fISCE.2011.5973888&partnerID=40&md5=f6ea401148e6558b861e4df6407e527e}, doi = {10.1109/ISCE.2011.5973888}, isbn = {9781612848433}, year = {2011}, date = {2011-01-01}, journal = {Proceedings of the International Symposium on Consumer Electronics, ISCE}, pages = {536-541}, abstract = {There are many research works have been done on autism cases using brain imaging techniques. In this paper, the Electroencephalogram (EEG) was used to understand and analyze the functionality of the brain to identify or detect brain disorder for autism in term of motor imitation. Thus, the portability and affordability of the EEG equipment makes it a better choice in comparison with other brain imaging device such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and megnetoencephalography (MEG). Data collection consists of both autistic and normal children with the total of 6 children for each group. All subjects were asked to clinch their hand by following video stimuli which presented in 1 minute time. Gaussian mixture model was used as a method of feature extraction for analyzing the brain signals in frequency domain. Then, the extraction data were classified using multilayer perceptron (MLP). According to the verification result, the percentage of discriminating between both groups is up to 85% in average by using k-fold validation. © 2011 IEEE.}, note = {cited By 8}, keywords = {Autistic Children, Brain Disorders, Brain Imaging, Brain Imaging Techniques, Brain Signals, Children with Autism, Consumer Electronics, Data Collection, Diseases, Electroencephalogram, Electroencephalography, Feature Extraction, Frequency Domains, Functional Magnetic Resonance Imaging, Gaussian Mixture Model, Magnetic Resonance Imaging, Multi Layer Perceptron, Multilayer Perceptron, Multilayers, Positron Emission Tomography, Resonance, Space Models, Verification Results}, pubstate = {published}, tppubtype = {conference} } There are many research works have been done on autism cases using brain imaging techniques. In this paper, the Electroencephalogram (EEG) was used to understand and analyze the functionality of the brain to identify or detect brain disorder for autism in term of motor imitation. Thus, the portability and affordability of the EEG equipment makes it a better choice in comparison with other brain imaging device such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and megnetoencephalography (MEG). Data collection consists of both autistic and normal children with the total of 6 children for each group. All subjects were asked to clinch their hand by following video stimuli which presented in 1 minute time. Gaussian mixture model was used as a method of feature extraction for analyzing the brain signals in frequency domain. Then, the extraction data were classified using multilayer perceptron (MLP). According to the verification result, the percentage of discriminating between both groups is up to 85% in average by using k-fold validation. © 2011 IEEE. |
Testingadminnaacuitm2020-05-28T06:49:14+00:00
2012 |
Autism, EEG and brain electromagnetics research Conference 2012, ISBN: 9781467316668, (cited By 11). |
2011 |
2D Affective Space Model (ASM) for detecting autistic children Conference 2011, ISBN: 9781612848433, (cited By 8). |