2019 |
Prabhakar, S; Cheah, P S; Zhang, X; Zinter, M; Gianatasio, M; Hudry, E; Bronson, R T; Kwiatkowski, D J; Stemmer-Rachamimov, A; Maguire, C A; Sena-Esteves, M; Tannous, B A; Breakefield, X O Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1 Artikel Jurnal Molecular Therapy - Methods and Clinical Development, 15 , hlm. 18-26, 2019, ISSN: 23290501, (dipetik oleh 2). Abstrak | Pautan | BibTeX | Tag: Adeno Associated Virus, Adeno Associated Virus Vector, Animal Experiment, Animal Model, Artikel, Beta Actin, Blood Brain Barrier, Berat badan, Body Weight Gain, Brain Nerve Cell, Brain Ventricle, Percambahan Sel, Complementary DNA, Kajian Terkawal, Cre Recombinase, Drug Efficacy, Perempuan, Gen, Gene Replacement Therapy, Hamartin, HEK293 Cell Line, Hydrocephalus, Immunohistochemistry, Inverted Terminal Repeat, Long Term Care, Lelaki, Motor Activity, Motor Performance, Tetikus, Bukan Manusia, Jurnal Keutamaan, Promoter Region, Fungsi Protein, Protein Phosphorylation, Quantitative Analysis, Subventricular Zone, Survival Time, Tuberous Sclerosis, Tuberous Sclerosis Type 1, Vascularization, Viral Gene Delivery System @artikel{Prabhakar201918, tajuk = {Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1}, pengarang = {S Prabhakar and P S Cheah and X Zhang and M Zinter and M Gianatasio and E Hudry and R T Bronson and D J Kwiatkowski and A Stemmer-Rachamimov and C A Maguire and M Sena-Esteves and B A Tannous and X O Breakefield}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070908794&doi=10.1016%2fj.omtm.2019.08.003&rakan kongsi = 40&md5=b169187dde0d3b05f8a9d5295a4ad8c4}, doi = {10.1016/j.omtm.2019.08.003}, terbitan = {23290501}, tahun = {2019}, tarikh = {2019-01-01}, jurnal = {Molecular Therapy - Methods and Clinical Development}, isi padu = {15}, halaman = {18-26}, penerbit = {Akhbar Sel}, abstrak = {Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome caused by mutations in TSC1 or TSC2, encoding hamartin and tuberin, masing-masing. These proteins act as a complex that inhibits mammalian target of rapamycin (mTOR)-mediated cell growth and proliferation. Loss of either protein leads to overgrowth in many organs, including subependymal nodules, subependymal giant cell astrocytomas, and cortical tubers in the human brain. Neurological manifestations in TSC include intellectual disability, autisme, hydrocephalus, and epilepsy. In a stochastic mouse model of TSC1 brain lesions, complete loss of Tsc1 is achieved in homozygous Tsc1-floxed mice in a subpopulation of neural cells in the brain by intracerebroventricular (i.c.v.) injection at birth of an adeno-associated virus (AAV) vector encoding Cre recombinase. This results in median survival of 38 days and brain pathology, including subependymal lesions and enlargement of neuronal cells. Remarkably, when these mice were injected intravenously on day 21 with an AAV9 vector encoding hamartin, most survived at least up to 429 days in apparently healthy condition with marked reduction in brain pathology. Oleh itu, a single intravenous administration of an AAV vector encoding hamartin restored protein function in enough cells in the brain to extend lifespan in this TSC1 mouse model. © 2019}, nota = {dipetik oleh 2}, kata kunci = {Adeno Associated Virus, Adeno Associated Virus Vector, Animal Experiment, Animal Model, Artikel, Beta Actin, Blood Brain Barrier, Berat badan, Body Weight Gain, Brain Nerve Cell, Brain Ventricle, Percambahan Sel, Complementary DNA, Kajian Terkawal, Cre Recombinase, Drug Efficacy, Perempuan, Gen, Gene Replacement Therapy, Hamartin, HEK293 Cell Line, Hydrocephalus, Immunohistochemistry, Inverted Terminal Repeat, Long Term Care, Lelaki, Motor Activity, Motor Performance, Tetikus, Bukan Manusia, Jurnal Keutamaan, Promoter Region, Fungsi Protein, Protein Phosphorylation, Quantitative Analysis, Subventricular Zone, Survival Time, Tuberous Sclerosis, Tuberous Sclerosis Type 1, Vascularization, Viral Gene Delivery System}, pubstate = {diterbitkan}, tppubtype = {artikel} } Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome caused by mutations in TSC1 or TSC2, encoding hamartin and tuberin, masing-masing. These proteins act as a complex that inhibits mammalian target of rapamycin (mTOR)-mediated cell growth and proliferation. Loss of either protein leads to overgrowth in many organs, including subependymal nodules, subependymal giant cell astrocytomas, and cortical tubers in the human brain. Neurological manifestations in TSC include intellectual disability, autisme, hydrocephalus, and epilepsy. In a stochastic mouse model of TSC1 brain lesions, complete loss of Tsc1 is achieved in homozygous Tsc1-floxed mice in a subpopulation of neural cells in the brain by intracerebroventricular (i.c.v.) injection at birth of an adeno-associated virus (AAV) vector encoding Cre recombinase. This results in median survival of 38 days and brain pathology, including subependymal lesions and enlargement of neuronal cells. Remarkably, when these mice were injected intravenously on day 21 with an AAV9 vector encoding hamartin, most survived at least up to 429 days in apparently healthy condition with marked reduction in brain pathology. Oleh itu, a single intravenous administration of an AAV vector encoding hamartin restored protein function in enough cells in the brain to extend lifespan in this TSC1 mouse model. © 2019 |
2012 |
Tan, E H; Razak, S A; Abdullah, J M; Yusoff, Mohamed A A Epilepsy Research, 102 (3), hlm. 210-215, 2012, ISSN: 09201211, (dipetik oleh 2). Abstrak | Pautan | BibTeX | Tag: Alanine, Amino Acid Substitution, Arginine, Artikel, Asparagine, Aspartic Acid, Anak-anak, Artikel Klinikal, Clinical Feature, Kajian Terkawal, Persatuan Penyakit, DNA Mutational Analysis, DNA Sequence, Elektroensefalografi, Epilepsi, Febrile, Febrile Convulsion, Perempuan, Gen, Gene Frequency, Pengenalan Gen, Generalized, Generalized Epilepsy, Persatuan Genetik, Kecenderungan Genetik, Genetic Screening, Genetic Variability, Glycine, Histidine, Manusia, Bayi, Malaysia, Lelaki, Missense Mutation, Molecular Pathology, Mutation, Mutational Analysis, Mutator Gene, Nav1.1 Voltage-Gated Sodium Channel, Onset Age, Patient Assessment, Polimorfisme, Kanak-kanak Prasekolah, Jurnal Keutamaan, Promoter Region, Budak sekolah, Seizure, Sequence Analysis, Nukleotida Tunggal, Polimorfisme Nukleotida Tunggal, Sodium Channel Nav1.1, Voltage Gated Sodium Channel Alpha1 Subunit Gene @artikel{Tan2012210, tajuk = {De-novo mutations and genetic variation in the SCN1A gene in Malaysian patients with generalized epilepsy with febrile seizures plus (GEFS+)}, pengarang = {E H Tan and S A Razak and J M Abdullah and A A Mohamed Yusoff}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870296042&doi=10.1016%2fj.eplepsyres.2012.08.004&rakan kongsi = 40&md5=25cc4eeb07db2492a7c04c6b3b3b2167}, doi = {10.1016/j.eplepsyres.2012.08.004}, terbitan = {09201211}, tahun = {2012}, tarikh = {2012-01-01}, jurnal = {Epilepsy Research}, isi padu = {102}, nombor = {3}, halaman = {210-215}, abstrak = {Generalized epilepsy with febrile seizures plus (GEFS+) comprises a group of clinically and genetically heterogeneous epilepsy syndrome. Di sini, we provide the first report of clinical presentation and mutational analysis of SCN1A gene in 36 Malaysian GEFS+ patients. Mutational analysis of SCN1A gene revealed twenty seven sequence variants (missense mutation and silent polymorphism also intronic polymorphism), as well as 2 novel de-novo mutations were found in our patients at coding regions, c.5197A>G (N1733D) and c.4748A>G (H1583R). Our findings provide potential genetic insights into the pathogenesis of GEFS+ in Malaysian populations concerning the SCN1A gene mutations. © 2012 Elsevier B.V.}, nota = {dipetik oleh 2}, kata kunci = {Alanine, Amino Acid Substitution, Arginine, Artikel, Asparagine, Aspartic Acid, Anak-anak, Artikel Klinikal, Clinical Feature, Kajian Terkawal, Persatuan Penyakit, DNA Mutational Analysis, DNA Sequence, Elektroensefalografi, Epilepsi, Febrile, Febrile Convulsion, Perempuan, Gen, Gene Frequency, Pengenalan Gen, Generalized, Generalized Epilepsy, Persatuan Genetik, Kecenderungan Genetik, Genetic Screening, Genetic Variability, Glycine, Histidine, Manusia, Bayi, Malaysia, Lelaki, Missense Mutation, Molecular Pathology, Mutation, Mutational Analysis, Mutator Gene, Nav1.1 Voltage-Gated Sodium Channel, Onset Age, Patient Assessment, Polimorfisme, Kanak-kanak Prasekolah, Jurnal Keutamaan, Promoter Region, Budak sekolah, Seizure, Sequence Analysis, Nukleotida Tunggal, Polimorfisme Nukleotida Tunggal, Sodium Channel Nav1.1, Voltage Gated Sodium Channel Alpha1 Subunit Gene}, pubstate = {diterbitkan}, tppubtype = {artikel} } Generalized epilepsy with febrile seizures plus (GEFS+) comprises a group of clinically and genetically heterogeneous epilepsy syndrome. Di sini, we provide the first report of clinical presentation and mutational analysis of SCN1A gene in 36 Malaysian GEFS+ patients. Mutational analysis of SCN1A gene revealed twenty seven sequence variants (missense mutation and silent polymorphism also intronic polymorphism), as well as 2 novel de-novo mutations were found in our patients at coding regions, c.5197A>G (N1733D) and c.4748A>G (H1583R). Our findings provide potential genetic insights into the pathogenesis of GEFS+ in Malaysian populations concerning the SCN1A gene mutations. © 2012 Elsevier B.V. |
Ujianadminnaacuitm2020-05-28T06:49:14+00:00
2019 |
Long-Term Therapeutic Efficacy of Intravenous AAV-Mediated Hamartin Replacement in Mouse Model of Tuberous Sclerosis Type 1 Artikel Jurnal Molecular Therapy - Methods and Clinical Development, 15 , hlm. 18-26, 2019, ISSN: 23290501, (dipetik oleh 2). |
2012 |
Epilepsy Research, 102 (3), hlm. 210-215, 2012, ISSN: 09201211, (dipetik oleh 2). |