2018 |
Tsuchida, N; Hamada, K; Shiina, M; Kato, M; Kobayashi, Y; Tohyama, J; Kimura, K; Hoshino, K; Ganesan, V; Teik, K W; Nakashima, M; Mitsuhashi, S; Mizuguchi, T; Takata, A; Miyake, N; Saitsu, H; Ogata, K; Miyatake, S; Matsumoto, N GRIN2D variants in three cases of developmental and epileptic encephalopathy Artikel Jurnal Clinical Genetics, 94 (6), hlm. 538-547, 2018, ISSN: 00099163, (dipetik oleh 4). Abstrak | Pautan | BibTeX | Tag: Remaja, Allele, Amino Acid Sequence, Amino Acid Substitution, Amino Terminal Sequence, Anemia, Antibiotic Agent, Antibiotic Therapy, Artikel, Atonic Seizure, Gangguan Defisit Perhatian, Autisme, Binding Affinity, Otak, Brain Atrophy, Carbamazepine, Laporan kes, Channel Gating, Kimia, Anak-anak, Artikel Klinikal, Clinical Feature, Clobazam, Clonazepam, Conformational Transition, Continuous Infusion, Contracture, Crystal Structure, Cysteine Ethyl Ester Tc 99m, Kelewatan Perkembangan, Gangguan Perkembangan, Elektroencephalogram, Elektroensefalografi, Epilepsi, Epileptic Discharge, Ethosuximide, Eye Tracking, Febrile Convulsion, Perempuan, Frontal Lobe Epilepsy, Gen, Gene Frequency, Genetic Variation, Genetik, Genotype, GRIN2D Protein, Heterozygosity, Home Oxygen Therapy, Manusia, Sel Manusia, Hydrogen Bond, Kemerosotan Intelektual, Intelligence Quotient, Intractable Epilepsy, Ketamine, Lacosamide, Lamotrigine, Lennox Gastaut Syndrome, Levetiracetam, Magnetoencephalography, Lelaki, Maternal Hypertension, Melatonin, Migraine, Missense Mutation, Molecular Dynamics, Molecular Dynamics Simulation, Mutation, Myoclonus Seizure, N Methyl Dextro Aspartic Acid Receptor, N Methyl Dextro Aspartic Acid Receptor 2D, N-Methyl-D-Aspartate, Neonatal Pneumonia, Neonatal Respiratory Distress Syndrome, Neuroimaging, Nuclear Magnetic Resonance Imaging, Phenobarbital, Premature Labor, Prasekolah, Kanak-kanak Prasekolah, Jurnal Keutamaan, Protein Conformation, Proximal Interphalangeal Joint, Pyridoxine, Receptors, Respiratory Arrest, Sanger Sequencing, Budak sekolah, Single Photon Emission Computed Tomography, Sleep Disordered Breathing, Static Electricity, Stridor, Structure-Activity Relationship, Subglottic Stenosis, Superior Temporal Gyrus, Supramarginal Gyrus, Thiopental, Tonic Seizure, Valproic Acid, Wakefulness, Wechsler Intelligence Scale for Children, Whole Exome Sequencing @artikel{Tsuchida2018538, tajuk = {GRIN2D variants in three cases of developmental and epileptic encephalopathy}, pengarang = {N Tsuchida and K Hamada and M Shiina and M Kato and Y Kobayashi and J Tohyama and K Kimura and K Hoshino and V Ganesan and K W Teik and M Nakashima and S Mitsuhashi and T Mizuguchi and A Takata and N Miyake and H Saitsu and K Ogata and S Miyatake and N Matsumoto}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056487337&doi=10.1111%2fcge.13454&rakan kongsi = 40&md5=f0d32670db57261820bc244943cffd62}, doi = {10.1111/cge.13454}, terbitan = {00099163}, tahun = {2018}, tarikh = {2018-01-01}, jurnal = {Clinical Genetics}, isi padu = {94}, nombor = {6}, halaman = {538-547}, penerbit = {Blackwell Publishing Ltd}, abstrak = {N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Baru-baru ini, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. Dalam kajian ini, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd}, nota = {dipetik oleh 4}, kata kunci = {Remaja, Allele, Amino Acid Sequence, Amino Acid Substitution, Amino Terminal Sequence, Anemia, Antibiotic Agent, Antibiotic Therapy, Artikel, Atonic Seizure, Gangguan Defisit Perhatian, Autisme, Binding Affinity, Otak, Brain Atrophy, Carbamazepine, Laporan kes, Channel Gating, Kimia, Anak-anak, Artikel Klinikal, Clinical Feature, Clobazam, Clonazepam, Conformational Transition, Continuous Infusion, Contracture, Crystal Structure, Cysteine Ethyl Ester Tc 99m, Kelewatan Perkembangan, Gangguan Perkembangan, Elektroencephalogram, Elektroensefalografi, Epilepsi, Epileptic Discharge, Ethosuximide, Eye Tracking, Febrile Convulsion, Perempuan, Frontal Lobe Epilepsy, Gen, Gene Frequency, Genetic Variation, Genetik, Genotype, GRIN2D Protein, Heterozygosity, Home Oxygen Therapy, Manusia, Sel Manusia, Hydrogen Bond, Kemerosotan Intelektual, Intelligence Quotient, Intractable Epilepsy, Ketamine, Lacosamide, Lamotrigine, Lennox Gastaut Syndrome, Levetiracetam, Magnetoencephalography, Lelaki, Maternal Hypertension, Melatonin, Migraine, Missense Mutation, Molecular Dynamics, Molecular Dynamics Simulation, Mutation, Myoclonus Seizure, N Methyl Dextro Aspartic Acid Receptor, N Methyl Dextro Aspartic Acid Receptor 2D, N-Methyl-D-Aspartate, Neonatal Pneumonia, Neonatal Respiratory Distress Syndrome, Neuroimaging, Nuclear Magnetic Resonance Imaging, Phenobarbital, Premature Labor, Prasekolah, Kanak-kanak Prasekolah, Jurnal Keutamaan, Protein Conformation, Proximal Interphalangeal Joint, Pyridoxine, Receptors, Respiratory Arrest, Sanger Sequencing, Budak sekolah, Single Photon Emission Computed Tomography, Sleep Disordered Breathing, Static Electricity, Stridor, Structure-Activity Relationship, Subglottic Stenosis, Superior Temporal Gyrus, Supramarginal Gyrus, Thiopental, Tonic Seizure, Valproic Acid, Wakefulness, Wechsler Intelligence Scale for Children, Whole Exome Sequencing}, pubstate = {diterbitkan}, tppubtype = {artikel} } N-methyl-d-aspartate (NMDA) receptors are glutamate-activated ion channels that are widely distributed in the central nervous system and essential for brain development and function. Dysfunction of NMDA receptors has been associated with various neurodevelopmental disorders. Baru-baru ini, a de novo recurrent GRIN2D missense variant was found in two unrelated patients with developmental and epileptic encephalopathy. Dalam kajian ini, we identified by whole exome sequencing novel heterozygous GRIN2D missense variants in three unrelated patients with severe developmental delay and intractable epilepsy. All altered residues were highly conserved across vertebrates and among the four GluN2 subunits. Structural consideration indicated that all three variants are probably to impair GluN2D function, either by affecting intersubunit interaction or altering channel gating activity. We assessed the clinical features of our three cases and compared them to those of the two previously reported GRIN2D variant cases, and found that they all show similar clinical features. This study provides further evidence of GRIN2D variants being causal for epilepsy. Genetic diagnosis for GluN2-related disorders may be clinically useful when considering drug therapy targeting NMDA receptors. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd |
2014 |
Brett, M; McPherson, J; Vokal, Z J; Lai, A; Tan, E -S; Ng, Saya; Ong, L -C; Cham, B; Tan, P; Bunga mawar, S; Tan, DAN -C PLoS SATU, 9 (4), 2014, ISSN: 19326203, (dipetik oleh 20). Abstrak | Pautan | BibTeX | Tag: Artikel, ATRX Gene, Autisme, Gangguan Spektrum Autisme, Anak-anak, Artikel Klinikal, Congenital Abnormalities, Congenital Malformation, Kajian Terkawal, Diagnostic Test, DNA Mutational Analysis, Perempuan, Gen, Profil Ekspresi Gen, Gene Mutation, Penyasaran Gen, Persatuan Genetik, Genetic Association Studies, Genetic Disorder, Genetic Variability, Genetic Variation, Genetik, Genome-Wide Association Study, High Throughput Sequencing, High-Throughput Nucleotide Sequencing, Manusia, Kecacatan Intelektual, Kemerosotan Intelektual, Karyotype, L1CAM Gene, Lelaki, Mutation, Nonsense Mutation, Nucleotide Sequence, Fenotip, Polimorfisme, RNA Splice Sites, RNA Splicing, Nukleotida Tunggal, Polimorfisme Nukleotida Tunggal @artikel{Brett2014, tajuk = {Massively parallel sequencing of patients with intellectual disability, congenital anomalies and/or autism spectrum disorders with a targeted gene panel}, pengarang = {M Brett and J McPherson and Z J Zang and A Lai and E -S Tan and I Ng and L -C Ong and B Cham and P Tan and S Rozen and E -C Tan}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898625023&doi=10.1371/journal.pone.0093409&rakan kongsi = 40&md5=f673e204a009bf84de81ea69dcd026db}, doi = {10.1371/jurnal.pone.0093409}, terbitan = {19326203}, tahun = {2014}, tarikh = {2014-01-01}, jurnal = {PLoS SATU}, isi padu = {9}, nombor = {4}, penerbit = {Perpustakaan Awam Sains}, abstrak = {Developmental delay and/or intellectual disability (DD/ID) affects 1-3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81-84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322 × to 798 ×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. Walau bagaimanapun, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism. © 2014 Brett et al.}, nota = {dipetik oleh 20}, kata kunci = {Artikel, ATRX Gene, Autisme, Gangguan Spektrum Autisme, Anak-anak, Artikel Klinikal, Congenital Abnormalities, Congenital Malformation, Kajian Terkawal, Diagnostic Test, DNA Mutational Analysis, Perempuan, Gen, Profil Ekspresi Gen, Gene Mutation, Penyasaran Gen, Persatuan Genetik, Genetic Association Studies, Genetic Disorder, Genetic Variability, Genetic Variation, Genetik, Genome-Wide Association Study, High Throughput Sequencing, High-Throughput Nucleotide Sequencing, Manusia, Kecacatan Intelektual, Kemerosotan Intelektual, Karyotype, L1CAM Gene, Lelaki, Mutation, Nonsense Mutation, Nucleotide Sequence, Fenotip, Polimorfisme, RNA Splice Sites, RNA Splicing, Nukleotida Tunggal, Polimorfisme Nukleotida Tunggal}, pubstate = {diterbitkan}, tppubtype = {artikel} } Developmental delay and/or intellectual disability (DD/ID) affects 1-3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81-84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322 × to 798 ×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. Walau bagaimanapun, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism. © 2014 Brett et al. |
2012 |
Tan, E H; Razak, S A; Abdullah, J M; Yusoff, Mohamed A A Epilepsy Research, 102 (3), hlm. 210-215, 2012, ISSN: 09201211, (dipetik oleh 2). Abstrak | Pautan | BibTeX | Tag: Alanine, Amino Acid Substitution, Arginine, Artikel, Asparagine, Aspartic Acid, Anak-anak, Artikel Klinikal, Clinical Feature, Kajian Terkawal, Persatuan Penyakit, DNA Mutational Analysis, DNA Sequence, Elektroensefalografi, Epilepsi, Febrile, Febrile Convulsion, Perempuan, Gen, Gene Frequency, Pengenalan Gen, Generalized, Generalized Epilepsy, Persatuan Genetik, Kecenderungan Genetik, Genetic Screening, Genetic Variability, Glycine, Histidine, Manusia, Bayi, Malaysia, Lelaki, Missense Mutation, Molecular Pathology, Mutation, Mutational Analysis, Mutator Gene, Nav1.1 Voltage-Gated Sodium Channel, Onset Age, Patient Assessment, Polimorfisme, Kanak-kanak Prasekolah, Jurnal Keutamaan, Promoter Region, Budak sekolah, Seizure, Sequence Analysis, Nukleotida Tunggal, Polimorfisme Nukleotida Tunggal, Sodium Channel Nav1.1, Voltage Gated Sodium Channel Alpha1 Subunit Gene @artikel{Tan2012210, tajuk = {De-novo mutations and genetic variation in the SCN1A gene in Malaysian patients with generalized epilepsy with febrile seizures plus (GEFS+)}, pengarang = {E H Tan and S A Razak and J M Abdullah and A A Mohamed Yusoff}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870296042&doi=10.1016%2fj.eplepsyres.2012.08.004&rakan kongsi = 40&md5=25cc4eeb07db2492a7c04c6b3b3b2167}, doi = {10.1016/j.eplepsyres.2012.08.004}, terbitan = {09201211}, tahun = {2012}, tarikh = {2012-01-01}, jurnal = {Epilepsy Research}, isi padu = {102}, nombor = {3}, halaman = {210-215}, abstrak = {Generalized epilepsy with febrile seizures plus (GEFS+) comprises a group of clinically and genetically heterogeneous epilepsy syndrome. Di sini, we provide the first report of clinical presentation and mutational analysis of SCN1A gene in 36 Malaysian GEFS+ patients. Mutational analysis of SCN1A gene revealed twenty seven sequence variants (missense mutation and silent polymorphism also intronic polymorphism), as well as 2 novel de-novo mutations were found in our patients at coding regions, c.5197A>G (N1733D) and c.4748A>G (H1583R). Our findings provide potential genetic insights into the pathogenesis of GEFS+ in Malaysian populations concerning the SCN1A gene mutations. © 2012 Elsevier B.V.}, nota = {dipetik oleh 2}, kata kunci = {Alanine, Amino Acid Substitution, Arginine, Artikel, Asparagine, Aspartic Acid, Anak-anak, Artikel Klinikal, Clinical Feature, Kajian Terkawal, Persatuan Penyakit, DNA Mutational Analysis, DNA Sequence, Elektroensefalografi, Epilepsi, Febrile, Febrile Convulsion, Perempuan, Gen, Gene Frequency, Pengenalan Gen, Generalized, Generalized Epilepsy, Persatuan Genetik, Kecenderungan Genetik, Genetic Screening, Genetic Variability, Glycine, Histidine, Manusia, Bayi, Malaysia, Lelaki, Missense Mutation, Molecular Pathology, Mutation, Mutational Analysis, Mutator Gene, Nav1.1 Voltage-Gated Sodium Channel, Onset Age, Patient Assessment, Polimorfisme, Kanak-kanak Prasekolah, Jurnal Keutamaan, Promoter Region, Budak sekolah, Seizure, Sequence Analysis, Nukleotida Tunggal, Polimorfisme Nukleotida Tunggal, Sodium Channel Nav1.1, Voltage Gated Sodium Channel Alpha1 Subunit Gene}, pubstate = {diterbitkan}, tppubtype = {artikel} } Generalized epilepsy with febrile seizures plus (GEFS+) comprises a group of clinically and genetically heterogeneous epilepsy syndrome. Di sini, we provide the first report of clinical presentation and mutational analysis of SCN1A gene in 36 Malaysian GEFS+ patients. Mutational analysis of SCN1A gene revealed twenty seven sequence variants (missense mutation and silent polymorphism also intronic polymorphism), as well as 2 novel de-novo mutations were found in our patients at coding regions, c.5197A>G (N1733D) and c.4748A>G (H1583R). Our findings provide potential genetic insights into the pathogenesis of GEFS+ in Malaysian populations concerning the SCN1A gene mutations. © 2012 Elsevier B.V. |
Ujianadminnaacuitm2020-05-28T06:49:14+00:00
2018 |
GRIN2D variants in three cases of developmental and epileptic encephalopathy Artikel Jurnal Clinical Genetics, 94 (6), hlm. 538-547, 2018, ISSN: 00099163, (dipetik oleh 4). |
2014 |
PLoS SATU, 9 (4), 2014, ISSN: 19326203, (dipetik oleh 20). |
2012 |
Epilepsy Research, 102 (3), hlm. 210-215, 2012, ISSN: 09201211, (dipetik oleh 2). |