2018 |
Hariharan, M; Sindhu, R; Vijean, V; Yazid, H; Nadarajaw, T; Yaacob, S; Polat, K Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Artikel Jurnal Computer Methods and Programs in Biomedicine, 155 , hlm. 39-51, 2018, ISSN: 01692607, (dipetik oleh 21). Abstrak | Pautan | BibTeX | Tag: Accidents, Algoritma, Artikel, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Pengelasan (maklumat), Classification Algorithm, Pengelas, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Pengekstrakan, Extreme Learning Machine, Factual, Factual Database, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Fuzzy System, Hearing Impairment, Manusia, Kelaparan, Bayi, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Belajar, Linear Predictive Coding, Pembelajaran Mesin, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Pekali Cepstral Frekuensi Mel, Multi-Class Classification, Rangkaian Neural, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Patofisiologi, Prematurity, Kebolehulangan, Kebolehulangan Keputusan, Pemprosesan isyarat, Pengenalan suara, Wavelet Analysis, Wavelet Packet, Paket Wavelet Berubah @artikel{Hariharan201839, tajuk = {Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification}, pengarang = {M Hariharan and R Sindhu and V Vijean and H Yazid and T Nadarajaw and S Yaacob and K Polat}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036611215&doi=10.1016%2fj.cmpb.2017.11.021&rakan kongsi = 40&md5=1f3b17817b00f07cadad6eb61c0f4bf9}, doi = {10.1016/j.cmpb.2017.11.021}, terbitan = {01692607}, tahun = {2018}, tarikh = {2018-01-01}, jurnal = {Computer Methods and Programs in Biomedicine}, isi padu = {155}, halaman = {39-51}, penerbit = {Elsevier Ireland Ltd}, abstrak = {Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. Dalam kerja ini, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) dan 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) dan 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 ciri-ciri), Linear Predictive Coding (LPC) based cepstral features (56 ciri-ciri), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 ciri-ciri). The combined feature set consists of 568 ciri-ciri. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Akhirnya, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V.}, nota = {dipetik oleh 21}, kata kunci = {Accidents, Algoritma, Artikel, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Pengelasan (maklumat), Classification Algorithm, Pengelas, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Pengekstrakan, Extreme Learning Machine, Factual, Factual Database, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Fuzzy System, Hearing Impairment, Manusia, Kelaparan, Bayi, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Belajar, Linear Predictive Coding, Pembelajaran Mesin, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Pekali Cepstral Frekuensi Mel, Multi-Class Classification, Rangkaian Neural, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Patofisiologi, Prematurity, Kebolehulangan, Kebolehulangan Keputusan, Pemprosesan isyarat, Pengenalan suara, Wavelet Analysis, Wavelet Packet, Paket Wavelet Berubah}, pubstate = {diterbitkan}, tppubtype = {artikel} } Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. Dalam kerja ini, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) dan 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) dan 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 ciri-ciri), Linear Predictive Coding (LPC) based cepstral features (56 ciri-ciri), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 ciri-ciri). The combined feature set consists of 568 ciri-ciri. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Akhirnya, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V. |
2017 |
Hameed, S S; Hassan, R; Muhammad, F F Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM Artikel Jurnal PLoS SATU, 12 (11), 2017, ISSN: 19326203, (dipetik oleh 11). Abstrak | Pautan | BibTeX | Tag: Ketepatan, Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Gen CAPS2, Pengelasan (maklumat), Pengelas, Kajian Eksperimen, Gen, Ekspresi Gen, Pengenalan Gen, Persatuan Genetik, Prosedur Genetik, Risiko Genetik, Genetik, Algoritma Mesin Vektor Sokongan Pengoptimuman Zarah Perduaan Perduaan Geometri, Manusia, Penilaian risiko, Penyeragaman, Penapis Statistik, Parameter Statistik, Statistik, Mesin Vektor Sokongan @artikel{Hameed2017, tajuk = {Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM}, pengarang = {S S Hameed dan R Hassan dan F F Muhammad}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033361187&doi=10.1371/journal.pone.0187371&rakan kongsi = 40&md5=f9260d41165145f229a3cf157699635e}, doi = {10.1371/jurnal.pone.0187371}, terbitan = {19326203}, tahun = {2017}, tarikh = {2017-01-01}, jurnal = {PLoS SATU}, isi padu = {12}, nombor = {11}, penerbit = {Perpustakaan Awam Sains}, abstrak = {Dalam kerja ini, ekspresi gen dalam gangguan spektrum autisme (ASD) dianalisis dengan matlamat untuk memilih gen yang paling dikaitkan dan melaksanakan pengelasan. Objektif ini dicapai dengan menggunakan gabungan pelbagai penapis statistik dan mesin vektor sokongan pengoptimuman zarah binari geometri berasaskan pembalut (GBPSO-SVM) algoritma. Penggunaan penapis yang berbeza telah diserlahkan dengan memasukkan kriteria nisbah min dan median untuk membuang gen yang sangat serupa. Keputusan menunjukkan bahawa gen yang paling diskriminatif yang dikenal pasti dalam langkah pemilihan pertama dan terakhir termasuk kehadiran gen berulang. (CAPS2), yang ditugaskan sebagai gen yang paling berkaitan dengan risiko ASD. Subset gen gabungan yang dipilih oleh algoritma GBPSO-SVM dapat meningkatkan ketepatan klasifikasi. © 2017 Hameed et al. Ini ialah artikel akses terbuka yang diedarkan di bawah syarat Lesen Atribusi Creative Commons, yang membenarkan penggunaan tanpa had, pengedaran, dan pembiakan dalam mana-mana medium, dengan syarat penulis dan sumber asal dikreditkan.}, nota = {dipetik oleh 11}, kata kunci = {Ketepatan, Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Gen CAPS2, Pengelasan (maklumat), Pengelas, Kajian Eksperimen, Gen, Ekspresi Gen, Pengenalan Gen, Persatuan Genetik, Prosedur Genetik, Risiko Genetik, Genetik, Algoritma Mesin Vektor Sokongan Pengoptimuman Zarah Perduaan Perduaan Geometri, Manusia, Penilaian risiko, Penyeragaman, Penapis Statistik, Parameter Statistik, Statistik, Mesin Vektor Sokongan}, pubstate = {diterbitkan}, tppubtype = {artikel} } Dalam kerja ini, ekspresi gen dalam gangguan spektrum autisme (ASD) dianalisis dengan matlamat untuk memilih gen yang paling dikaitkan dan melaksanakan pengelasan. Objektif ini dicapai dengan menggunakan gabungan pelbagai penapis statistik dan mesin vektor sokongan pengoptimuman zarah binari geometri berasaskan pembalut (GBPSO-SVM) algoritma. Penggunaan penapis yang berbeza telah diserlahkan dengan memasukkan kriteria nisbah min dan median untuk membuang gen yang sangat serupa. Keputusan menunjukkan bahawa gen yang paling diskriminatif yang dikenal pasti dalam langkah pemilihan pertama dan terakhir termasuk kehadiran gen berulang. (CAPS2), yang ditugaskan sebagai gen yang paling berkaitan dengan risiko ASD. Subset gen gabungan yang dipilih oleh algoritma GBPSO-SVM dapat meningkatkan ketepatan klasifikasi. © 2017 Hameed et al. Ini ialah artikel akses terbuka yang diedarkan di bawah syarat Lesen Atribusi Creative Commons, yang membenarkan penggunaan tanpa had, pengedaran, dan pembiakan dalam mana-mana medium, dengan syarat penulis dan sumber asal dikreditkan. |
Ujianadminnaacuitm2020-05-28T06:49:14+00:00
2018 |
Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Artikel Jurnal Computer Methods and Programs in Biomedicine, 155 , hlm. 39-51, 2018, ISSN: 01692607, (dipetik oleh 21). |
2017 |
Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM Artikel Jurnal PLoS SATU, 12 (11), 2017, ISSN: 19326203, (dipetik oleh 11). |