2019 |
Misman, M F; Samah, A A; Ezudin, F A; Majid, H A; Shah, Z A; Hashim, H; Harun, M F Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2019, ISBN: 9781728130415, (dipetik oleh 0). Abstrak | Pautan | BibTeX | Tag: Gangguan Spektrum Autisme, Gangguan Otak, Pengelasan (maklumat), Ketepatan Pengelasan, Kaedah Pengelasan, Ujian Klinikal, Kemahiran Kognitif, Diagnosis Berbantu Komputer, Pembelajaran Mendalam, Rangkaian Neural Dalam, Penyakit, Belajar, Kaedah Pembelajaran Mesin, Data Saringan, Mesin Vektor Sokongan @ persidangan{Misman201929, tajuk = {Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam}, pengarang = {M F Misman dan A A Samah dan F A Ezudin dan H A Majid dan Z A Shah dan H Hashim dan M F Harun}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079349811&doi=10.1109/AiDAS47888.2019.8970823&rakan kongsi = 40&md5=dd727e950667359680a6dbcc4855422f}, doi = {10.1109/AiDAS47888.2019.8970823}, isbn = {9781728130415}, tahun = {2019}, tarikh = {2019-01-01}, jurnal = {Prosiding - 2019 1st Persidangan Antarabangsa mengenai Kepintaran Buatan dan Sains Data, Gema 2019}, halaman = {29-34}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {Gangguan Spektrum Autisme (ASD) adalah gangguan otak perkembangan yang menyebabkan defisit dalam linguistik, komunikatif, dan kemahiran kognitif serta kemahiran sosial. Pelbagai aplikasi Pembelajaran Mesin telah digunakan selain daripada ujian klinikal yang ada, yang telah meningkatkan prestasi dalam diagnosis gangguan ini. Dalam kajian ini, kami menggunakan Rangkaian Neural Dalam (DNN) seni bina, yang telah menjadi kaedah popular dalam beberapa tahun kebelakangan ini dan terbukti meningkatkan ketepatan pengelasan. Kajian ini bertujuan untuk menganalisis prestasi model DNN dalam diagnosis ASD dari segi ketepatan klasifikasi dengan menggunakan dua set data saringan ASD dewasa.. Hasilnya kemudian dibandingkan dengan kaedah Pembelajaran Mesin sebelumnya oleh penyelidik lain, iaitu Mesin Vektor Sokongan (SVM). Ketepatan yang dicapai oleh model DNN dalam klasifikasi diagnosis ASD ialah 99.40% pada set data pertama dan dicapai 96.08% pada set data kedua. Sementara itu, model SVM mencapai ketepatan 95.24% dan 95.08% menggunakan data pertama dan kedua, masing-masing. Keputusan menunjukkan bahawa kes ASD boleh dikenal pasti dengan tepat dengan melaksanakan kaedah pengelasan DNN menggunakan data saringan dewasa ASD. © 2019 IEEE.}, nota = {dipetik oleh 0}, kata kunci = {Gangguan Spektrum Autisme, Gangguan Otak, Pengelasan (maklumat), Ketepatan Pengelasan, Kaedah Pengelasan, Ujian Klinikal, Kemahiran Kognitif, Diagnosis Berbantu Komputer, Pembelajaran Mendalam, Rangkaian Neural Dalam, Penyakit, Belajar, Kaedah Pembelajaran Mesin, Data Saringan, Mesin Vektor Sokongan}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Gangguan Spektrum Autisme (ASD) adalah gangguan otak perkembangan yang menyebabkan defisit dalam linguistik, komunikatif, dan kemahiran kognitif serta kemahiran sosial. Pelbagai aplikasi Pembelajaran Mesin telah digunakan selain daripada ujian klinikal yang ada, yang telah meningkatkan prestasi dalam diagnosis gangguan ini. Dalam kajian ini, kami menggunakan Rangkaian Neural Dalam (DNN) seni bina, yang telah menjadi kaedah popular dalam beberapa tahun kebelakangan ini dan terbukti meningkatkan ketepatan pengelasan. Kajian ini bertujuan untuk menganalisis prestasi model DNN dalam diagnosis ASD dari segi ketepatan klasifikasi dengan menggunakan dua set data saringan ASD dewasa.. Hasilnya kemudian dibandingkan dengan kaedah Pembelajaran Mesin sebelumnya oleh penyelidik lain, iaitu Mesin Vektor Sokongan (SVM). Ketepatan yang dicapai oleh model DNN dalam klasifikasi diagnosis ASD ialah 99.40% pada set data pertama dan dicapai 96.08% pada set data kedua. Sementara itu, model SVM mencapai ketepatan 95.24% dan 95.08% menggunakan data pertama dan kedua, masing-masing. Keputusan menunjukkan bahawa kes ASD boleh dikenal pasti dengan tepat dengan melaksanakan kaedah pengelasan DNN menggunakan data saringan dewasa ASD. © 2019 IEEE. |
Abdullah, A A; Rijal, S; Sengkang, S R Penilaian ke atas Algoritma Pembelajaran Mesin untuk Klasifikasi Gangguan Spektrum Autisme (ASD) Persidangan 1372 (1), Institut Penerbitan Fizik, 2019, ISSN: 17426588, (dipetik oleh 0). Abstrak | Pautan | BibTeX | Tag: Gangguan Spektrum Autisme, Penilaian Tingkah Laku, Kejuruteraan Bioperubatan, Pemetaan Otak, Pengelasan (maklumat), Pokok Keputusan, Penyakit, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Pengesahan Silang K Lipat, Belajar, Operator Pengecutan dan Pemilihan Mutlak Paling Kurang, Anggaran Kuasa Dua Terkecil, Regresi Logistik, Pembelajaran Mesin, Kaedah Pembelajaran Mesin, Pengimejan Resonans Magnetik, Carian Jiran Terdekat, Analisis regresi, Pembelajaran yang diselia, Pembelajaran Mesin Diawasi @ persidangan{Abdullah2019, tajuk = {Penilaian ke atas Algoritma Pembelajaran Mesin untuk Klasifikasi Gangguan Spektrum Autisme (ASD)}, pengarang = {A A Abdullah and S Rijal and S R Dash}, penyunting = {Rahim Mustafa Zaaba Norali Noor S B A N B S K A N B A B M Fook C.Y. Yazid H.B.}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076493636&doi=10.1088%2f1742-6596%2f1372%2f1%2f012052&rakan kongsi = 40&md5=2ec1bd9f6cf1e3afe965cc9e3792f536}, doi = {10.1088/1742-6596/1372/1/012052}, terbitan = {17426588}, tahun = {2019}, tarikh = {2019-01-01}, jurnal = {Journal of Physics: Conference Series}, isi padu = {1372}, nombor = {1}, penerbit = {Institut Penerbitan Fizik}, abstrak = {Gangguan Spektrum Autisme (ASD) dicirikan oleh kelewatan dalam pembangunan interaksi sosial, tingkah laku berulang dan minat yang sempit, yang biasanya didiagnosis dengan alat diagnostik standard seperti Jadual Pemerhatian Diagnostik Autisme (Remaja) dan Temuduga Diagnostik Autisme-Disemak (ADIR-R). Kerja sebelumnya telah melaksanakan kaedah pembelajaran mesin untuk klasifikasi ASD, namun mereka menggunakan jenis set data yang berbeza seperti imej otak untuk MRI dan EEG, gen risiko dalam profil genetik dan penilaian tingkah laku berdasarkan ADOS dan ADI-R. Di sini percubaan menggunakan Soalan Spektrum Autisme (AQ) untuk membina model yang mempunyai potensi yang lebih tinggi untuk mengklasifikasikan ASD telah dibangunkan. Dalam penyelidikan ini, Chi-square dan Operator Pengecutan dan Pemilihan Mutlak Terkecil (LASSO) telah dipilih sebagai kaedah pemilihan ciri untuk memilih ciri yang paling penting 3 algoritma pembelajaran mesin yang diselia, iaitu Hutan Rawak, Regresi Logistik dan K-Nearest Neighbours dengan pengesahan silang K-fold. Prestasi dinilai di mana keputusan Regresi Logistik mendapat ketepatan tertinggi dengan 97.541% menggunakan model dengan 13 ciri yang dipilih berdasarkan kaedah pemilihan Khi kuasa dua. © 2019 IOP Publishing Ltd. Hak cipta terpelihara.}, nota = {dipetik oleh 0}, kata kunci = {Gangguan Spektrum Autisme, Penilaian Tingkah Laku, Kejuruteraan Bioperubatan, Pemetaan Otak, Pengelasan (maklumat), Pokok Keputusan, Penyakit, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Pengesahan Silang K Lipat, Belajar, Operator Pengecutan dan Pemilihan Mutlak Paling Kurang, Anggaran Kuasa Dua Terkecil, Regresi Logistik, Pembelajaran Mesin, Kaedah Pembelajaran Mesin, Pengimejan Resonans Magnetik, Carian Jiran Terdekat, Analisis regresi, Pembelajaran yang diselia, Pembelajaran Mesin Diawasi}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Gangguan Spektrum Autisme (ASD) dicirikan oleh kelewatan dalam pembangunan interaksi sosial, tingkah laku berulang dan minat yang sempit, yang biasanya didiagnosis dengan alat diagnostik standard seperti Jadual Pemerhatian Diagnostik Autisme (Remaja) dan Temuduga Diagnostik Autisme-Disemak (ADIR-R). Kerja sebelumnya telah melaksanakan kaedah pembelajaran mesin untuk klasifikasi ASD, namun mereka menggunakan jenis set data yang berbeza seperti imej otak untuk MRI dan EEG, gen risiko dalam profil genetik dan penilaian tingkah laku berdasarkan ADOS dan ADI-R. Di sini percubaan menggunakan Soalan Spektrum Autisme (AQ) untuk membina model yang mempunyai potensi yang lebih tinggi untuk mengklasifikasikan ASD telah dibangunkan. Dalam penyelidikan ini, Chi-square dan Operator Pengecutan dan Pemilihan Mutlak Terkecil (LASSO) telah dipilih sebagai kaedah pemilihan ciri untuk memilih ciri yang paling penting 3 algoritma pembelajaran mesin yang diselia, iaitu Hutan Rawak, Regresi Logistik dan K-Nearest Neighbours dengan pengesahan silang K-fold. Prestasi dinilai di mana keputusan Regresi Logistik mendapat ketepatan tertinggi dengan 97.541% menggunakan model dengan 13 ciri yang dipilih berdasarkan kaedah pemilihan Khi kuasa dua. © 2019 IOP Publishing Ltd. Hak cipta terpelihara. |
2018 |
Hariharan, M; Sindhu, R; Vijean, V; Yazid, H; Nadarajaw, T; Yaacob, S; Polat, K Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Artikel Jurnal Computer Methods and Programs in Biomedicine, 155 , hlm. 39-51, 2018, ISSN: 01692607, (dipetik oleh 21). Abstrak | Pautan | BibTeX | Tag: Accidents, Algoritma, Artikel, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Pengelasan (maklumat), Classification Algorithm, Pengelas, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Pengekstrakan, Extreme Learning Machine, Factual, Factual Database, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Fuzzy System, Hearing Impairment, Manusia, Kelaparan, Bayi, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Belajar, Linear Predictive Coding, Pembelajaran Mesin, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Pekali Cepstral Frekuensi Mel, Multi-Class Classification, Rangkaian Neural, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Patofisiologi, Prematurity, Kebolehulangan, Kebolehulangan Keputusan, Pemprosesan isyarat, Pengenalan suara, Wavelet Analysis, Wavelet Packet, Paket Wavelet Berubah @artikel{Hariharan201839, tajuk = {Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification}, pengarang = {M Hariharan and R Sindhu and V Vijean and H Yazid and T Nadarajaw and S Yaacob and K Polat}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036611215&doi=10.1016%2fj.cmpb.2017.11.021&rakan kongsi = 40&md5=1f3b17817b00f07cadad6eb61c0f4bf9}, doi = {10.1016/j.cmpb.2017.11.021}, terbitan = {01692607}, tahun = {2018}, tarikh = {2018-01-01}, jurnal = {Computer Methods and Programs in Biomedicine}, isi padu = {155}, halaman = {39-51}, penerbit = {Elsevier Ireland Ltd}, abstrak = {Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. Dalam kerja ini, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) dan 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) dan 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 ciri-ciri), Linear Predictive Coding (LPC) based cepstral features (56 ciri-ciri), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 ciri-ciri). The combined feature set consists of 568 ciri-ciri. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Akhirnya, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V.}, nota = {dipetik oleh 21}, kata kunci = {Accidents, Algoritma, Artikel, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Pengelasan (maklumat), Classification Algorithm, Pengelas, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Pengekstrakan, Extreme Learning Machine, Factual, Factual Database, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Fuzzy System, Hearing Impairment, Manusia, Kelaparan, Bayi, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Belajar, Linear Predictive Coding, Pembelajaran Mesin, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Pekali Cepstral Frekuensi Mel, Multi-Class Classification, Rangkaian Neural, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Patofisiologi, Prematurity, Kebolehulangan, Kebolehulangan Keputusan, Pemprosesan isyarat, Pengenalan suara, Wavelet Analysis, Wavelet Packet, Paket Wavelet Berubah}, pubstate = {diterbitkan}, tppubtype = {artikel} } Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. Dalam kerja ini, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) dan 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) dan 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 ciri-ciri), Linear Predictive Coding (LPC) based cepstral features (56 ciri-ciri), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 ciri-ciri). The combined feature set consists of 568 ciri-ciri. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Akhirnya, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V. |
2017 |
Ilias, S; Tahir, N M; Jailani, R Feature extraction of autism gait data using principal component analysis and linear discriminant analysis Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2017, ISBN: 9781509009251, (dipetik oleh 0). Abstrak | Pautan | BibTeX | Tag: Pengelasan (maklumat), Analisis Diskriminan, Penyakit, Pengekstrakan, Pengekstrakan Ciri, Analisis Gait, Klasifikasi Gait, Image Retrieval, Elektronik Perindustrian, Kernel Function, Kinematic Parameters, Kinematik, Belajar, Analisis Diskriminasi Linear, Machine Learning Approaches, Sistem Analisis Pergerakan, Polynomial Functions, Analisis Komponen Utama, Mesin Vektor Sokongan, SVM Classifiers @ persidangan{Ilias2017275, tajuk = {Feature extraction of autism gait data using principal component analysis and linear discriminant analysis}, pengarang = {S Ilias and N M Tahir and R Jailani}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034081031&doi=10.1109%2fIEACON.2016.8067391&rakan kongsi = 40&md5=7deaef6538413df7bfaf7cf723001d72}, doi = {10.1109/IEACON.2016.8067391}, isbn = {9781509009251}, tahun = {2017}, tarikh = {2017-01-01}, jurnal = {IEACon 2016 - 2016 IEEE Industrial Electronics and Applications Conference}, halaman = {275-279}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {Dalam penyelidikan ini, the application of machine learning approach specifically support vector machine along with principal component analysis and linear discriminant analysis as feature extractions are evaluated and validated in discriminating gait features between normal subjects and autism children. Gait features of 32 normal and 12 autism children were recorded and analyzed using VICON motion analysis system and a force platform during normal walking. Di sini, twenty one gait features describing the three types of gait characteristics namely basic, kinetic and kinematic in these children are extracted. Selanjutnya, with these gait features as input during classification, the ability of SVM as classifier are investigated using three different kernel functions specifically linear, polynomial, and radial basis. Results showed that LDA as feature extraction is the highest accuracy with kinematic parameters as gait features along with polynomial function as kernel for the SVM classifier. This finding proven that LDA is suitable as feature extraction and SVM is indeed apt as gait classifier in classifying the gait pattern autism and normal children. © 2016 IEEE.}, nota = {dipetik oleh 0}, kata kunci = {Pengelasan (maklumat), Analisis Diskriminan, Penyakit, Pengekstrakan, Pengekstrakan Ciri, Analisis Gait, Klasifikasi Gait, Image Retrieval, Elektronik Perindustrian, Kernel Function, Kinematic Parameters, Kinematik, Belajar, Analisis Diskriminasi Linear, Machine Learning Approaches, Sistem Analisis Pergerakan, Polynomial Functions, Analisis Komponen Utama, Mesin Vektor Sokongan, SVM Classifiers}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Dalam penyelidikan ini, the application of machine learning approach specifically support vector machine along with principal component analysis and linear discriminant analysis as feature extractions are evaluated and validated in discriminating gait features between normal subjects and autism children. Gait features of 32 normal and 12 autism children were recorded and analyzed using VICON motion analysis system and a force platform during normal walking. Di sini, twenty one gait features describing the three types of gait characteristics namely basic, kinetic and kinematic in these children are extracted. Selanjutnya, with these gait features as input during classification, the ability of SVM as classifier are investigated using three different kernel functions specifically linear, polynomial, and radial basis. Results showed that LDA as feature extraction is the highest accuracy with kinematic parameters as gait features along with polynomial function as kernel for the SVM classifier. This finding proven that LDA is suitable as feature extraction and SVM is indeed apt as gait classifier in classifying the gait pattern autism and normal children. © 2016 IEEE. |
Hameed, S S; Hassan, R; Muhammad, F F Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM Artikel Jurnal PLoS SATU, 12 (11), 2017, ISSN: 19326203, (dipetik oleh 11). Abstrak | Pautan | BibTeX | Tag: Ketepatan, Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Gen CAPS2, Pengelasan (maklumat), Pengelas, Kajian Eksperimen, Gen, Ekspresi Gen, Pengenalan Gen, Persatuan Genetik, Prosedur Genetik, Risiko Genetik, Genetik, Algoritma Mesin Vektor Sokongan Pengoptimuman Zarah Perduaan Perduaan Geometri, Manusia, Penilaian risiko, Penyeragaman, Penapis Statistik, Parameter Statistik, Statistik, Mesin Vektor Sokongan @artikel{Hameed2017, tajuk = {Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM}, pengarang = {S S Hameed dan R Hassan dan F F Muhammad}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033361187&doi=10.1371/journal.pone.0187371&rakan kongsi = 40&md5=f9260d41165145f229a3cf157699635e}, doi = {10.1371/jurnal.pone.0187371}, terbitan = {19326203}, tahun = {2017}, tarikh = {2017-01-01}, jurnal = {PLoS SATU}, isi padu = {12}, nombor = {11}, penerbit = {Perpustakaan Awam Sains}, abstrak = {Dalam kerja ini, ekspresi gen dalam gangguan spektrum autisme (ASD) dianalisis dengan matlamat untuk memilih gen yang paling dikaitkan dan melaksanakan pengelasan. Objektif ini dicapai dengan menggunakan gabungan pelbagai penapis statistik dan mesin vektor sokongan pengoptimuman zarah binari geometri berasaskan pembalut (GBPSO-SVM) algoritma. Penggunaan penapis yang berbeza telah diserlahkan dengan memasukkan kriteria nisbah min dan median untuk membuang gen yang sangat serupa. Keputusan menunjukkan bahawa gen yang paling diskriminatif yang dikenal pasti dalam langkah pemilihan pertama dan terakhir termasuk kehadiran gen berulang. (CAPS2), yang ditugaskan sebagai gen yang paling berkaitan dengan risiko ASD. Subset gen gabungan yang dipilih oleh algoritma GBPSO-SVM dapat meningkatkan ketepatan klasifikasi. © 2017 Hameed et al. Ini ialah artikel akses terbuka yang diedarkan di bawah syarat Lesen Atribusi Creative Commons, yang membenarkan penggunaan tanpa had, pengedaran, dan pembiakan dalam mana-mana medium, dengan syarat penulis dan sumber asal dikreditkan.}, nota = {dipetik oleh 11}, kata kunci = {Ketepatan, Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Gen CAPS2, Pengelasan (maklumat), Pengelas, Kajian Eksperimen, Gen, Ekspresi Gen, Pengenalan Gen, Persatuan Genetik, Prosedur Genetik, Risiko Genetik, Genetik, Algoritma Mesin Vektor Sokongan Pengoptimuman Zarah Perduaan Perduaan Geometri, Manusia, Penilaian risiko, Penyeragaman, Penapis Statistik, Parameter Statistik, Statistik, Mesin Vektor Sokongan}, pubstate = {diterbitkan}, tppubtype = {artikel} } Dalam kerja ini, ekspresi gen dalam gangguan spektrum autisme (ASD) dianalisis dengan matlamat untuk memilih gen yang paling dikaitkan dan melaksanakan pengelasan. Objektif ini dicapai dengan menggunakan gabungan pelbagai penapis statistik dan mesin vektor sokongan pengoptimuman zarah binari geometri berasaskan pembalut (GBPSO-SVM) algoritma. Penggunaan penapis yang berbeza telah diserlahkan dengan memasukkan kriteria nisbah min dan median untuk membuang gen yang sangat serupa. Keputusan menunjukkan bahawa gen yang paling diskriminatif yang dikenal pasti dalam langkah pemilihan pertama dan terakhir termasuk kehadiran gen berulang. (CAPS2), yang ditugaskan sebagai gen yang paling berkaitan dengan risiko ASD. Subset gen gabungan yang dipilih oleh algoritma GBPSO-SVM dapat meningkatkan ketepatan klasifikasi. © 2017 Hameed et al. Ini ialah artikel akses terbuka yang diedarkan di bawah syarat Lesen Atribusi Creative Commons, yang membenarkan penggunaan tanpa had, pengedaran, dan pembiakan dalam mana-mana medium, dengan syarat penulis dan sumber asal dikreditkan. |
2016 |
Ilias, S; Tahir, N M; Jailani, R; Hasan, C Z C Classification of autism children gait patterns using Neural Network and Support Vector Machine Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2016, ISBN: 9781509015436, (dipetik oleh 5). Abstrak | Pautan | BibTeX | Tag: Accuracy Rate, Autisme, Pengelasan (maklumat), Penyakit, Analisis Gait, Gait Parameters, Corak Gait, Elektronik Perindustrian, Kinematik, Rangkaian Neural, NN Classifiers, Kepekaan dan Kekhususan, Mesin Vektor Sokongan, Three Categories @ persidangan{Ilias201652, tajuk = {Classification of autism children gait patterns using Neural Network and Support Vector Machine}, pengarang = {S Ilias and N M Tahir and R Jailani and C Z C Hasan}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992135613&doi=10.1109%2fISCAIE.2016.7575036&rakan kongsi = 40&md5=55c6d166768ed5fa3b504a2bd3441829}, doi = {10.1109/ISCAIE.2016.7575036}, isbn = {9781509015436}, tahun = {2016}, tarikh = {2016-01-01}, jurnal = {ISCA 2016 - 2016 Simposium IEEE mengenai Aplikasi Komputer dan Elektronik Industri}, halaman = {52-56}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {Dalam kajian ini, we deemed further to evaluate the performance of Neural Network (NN) and Support Vector Machine (SVM) in classifying the gait patterns between autism and normal children. Pertama, temporal spatial, kinetic and kinematic gait parameters of forty four subjects namely thirty two normal subjects and twelve autism children are acquired. Seterusnya, these three category gait parameters acted as inputs to both classifiers. Results showed that fusion of temporal spatial and kinematic contributed the highest accuracy rate for NN classifier specifically 95% whilst SVM with polynomial as kernel, 95% accuracy rate is contributed by fusion of all gait parameters as inputs to the classifier. Sebagai tambahan, the classifiers performance is validated by computing both value of sensitivity and specificity. With SVM using polynomial as kernel, sensitivity attained is 100% indicated that the classifier's ability to perfectly discriminate normal subjects from autism subjects whilst 85% specificity showed that SVM is able to identify autism subjects as autism based on their gait patterns at 85% rate. © 2016 IEEE.}, nota = {dipetik oleh 5}, kata kunci = {Accuracy Rate, Autisme, Pengelasan (maklumat), Penyakit, Analisis Gait, Gait Parameters, Corak Gait, Elektronik Perindustrian, Kinematik, Rangkaian Neural, NN Classifiers, Kepekaan dan Kekhususan, Mesin Vektor Sokongan, Three Categories}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Dalam kajian ini, we deemed further to evaluate the performance of Neural Network (NN) and Support Vector Machine (SVM) in classifying the gait patterns between autism and normal children. Pertama, temporal spatial, kinetic and kinematic gait parameters of forty four subjects namely thirty two normal subjects and twelve autism children are acquired. Seterusnya, these three category gait parameters acted as inputs to both classifiers. Results showed that fusion of temporal spatial and kinematic contributed the highest accuracy rate for NN classifier specifically 95% whilst SVM with polynomial as kernel, 95% accuracy rate is contributed by fusion of all gait parameters as inputs to the classifier. Sebagai tambahan, the classifiers performance is validated by computing both value of sensitivity and specificity. With SVM using polynomial as kernel, sensitivity attained is 100% indicated that the classifier's ability to perfectly discriminate normal subjects from autism subjects whilst 85% specificity showed that SVM is able to identify autism subjects as autism based on their gait patterns at 85% rate. © 2016 IEEE. |
2013 |
Syams, W K; Wahab, A Source-temporal-features for detection EEG behavior of autism spectrum disorder Persidangan 2013, ISBN: 9781479901340, (dipetik oleh 1). Abstrak | Pautan | BibTeX | Tag: ASD, Gangguan Spektrum Autisme, Brain Activity, Kanak-kanak dengan Autisme, Pengelasan (maklumat), Komunikasi, Penyakit, Elektroensefalografi, Electronic Document, Teknologi maklumat, Multi-Layer Perception, Temporal Features, Time Difference of Arrival @ persidangan{Shams2013, tajuk = {Source-temporal-features for detection EEG behavior of autism spectrum disorder}, pengarang = {W K Shams and A Wahab}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879037124&doi=10.1109%2fICT4M.2013.6518913&rakan kongsi = 40&md5=db31715811e1e8fdf62c9d61daf8e6f6}, doi = {10.1109/ICT4M.2013.6518913}, isbn = {9781479901340}, tahun = {2013}, tarikh = {2013-01-01}, jurnal = {2013 5Persidangan Antarabangsa mengenai Teknologi Maklumat dan Komunikasi untuk Dunia Muslim, ICT4M 2013}, abstrak = {This study introduces a new model to capture the abnormal brain activity of children with Autism Spectrum Disorder (ASD) during eyes open and eyes closed resting conditions. EEG data was collected from normal subjects' ages (4 ke 9) years and ASD subjects match group. Time Difference of Arrival (TDOA) approach was applied with EEG data raw for feature extracted at time domain. The neural network, Multilayer Perception (MLP) was used to distinguish between the two groups during the two tasks. Results show significant accuracy around 98% for both tasks and clearly discriminate for the features in z-dimension his electronic document is a "live" template and already defines the components of your paper [title, teks, heads, etc.] in its style sheet. © 2013 IEEE.}, nota = {dipetik oleh 1}, kata kunci = {ASD, Gangguan Spektrum Autisme, Brain Activity, Kanak-kanak dengan Autisme, Pengelasan (maklumat), Komunikasi, Penyakit, Elektroensefalografi, Electronic Document, Teknologi maklumat, Multi-Layer Perception, Temporal Features, Time Difference of Arrival}, pubstate = {diterbitkan}, tppubtype = {persidangan} } This study introduces a new model to capture the abnormal brain activity of children with Autism Spectrum Disorder (ASD) during eyes open and eyes closed resting conditions. EEG data was collected from normal subjects' ages (4 ke 9) years and ASD subjects match group. Time Difference of Arrival (TDOA) approach was applied with EEG data raw for feature extracted at time domain. The neural network, Multilayer Perception (MLP) was used to distinguish between the two groups during the two tasks. Results show significant accuracy around 98% for both tasks and clearly discriminate for the features in z-dimension his electronic document is a "live" template and already defines the components of your paper [title, teks, heads, etc.] in its style sheet. © 2013 IEEE. |
2012 |
Syams, W K; Wahab, A; Qidwai, U A Fuzzy model for detection and estimation of the degree of autism spectrum disorder Artikel Jurnal Nota Kuliah dalam Sains Komputer (termasuk subseries Nota Kuliah dalam Artificial Intelligence dan Lecture Notes dalam Bioinformatics), 7666 LNCS (PART 4), hlm. 372-379, 2012, ISSN: 03029743, (dipetik oleh 2). Abstrak | Pautan | BibTeX | Tag: Gangguan Spektrum Autisme, Pengelasan (maklumat), Data Processing, Detection and Estimation, Penyakit, Campur Tangan Awal, EEG Signals, Elektrofisiologi, Fuzzy Approach, Fuzzy Modeling, Spectrum Energy, Subtractive Clustering, Time-Frequency Transformation, Treatment Process @artikel{Shams2012372, tajuk = {Fuzzy model for detection and estimation of the degree of autism spectrum disorder}, pengarang = {W K Shams and A Wahab and U A Qidwai}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869038189&doi=10.1007%2f978-3-642-34478-7_46&rakan kongsi = 40&md5=98929aba468010a02f652994b0da2a54}, doi = {10.1007/978-3-642-34478-7_46}, terbitan = {03029743}, tahun = {2012}, tarikh = {2012-01-01}, jurnal = {Nota Kuliah dalam Sains Komputer (termasuk subseries Nota Kuliah dalam Artificial Intelligence dan Lecture Notes dalam Bioinformatics)}, isi padu = {7666 LNCS}, nombor = {PART 4}, halaman = {372-379}, abstrak = {Early detection of autism spectrum disorder (ASD) is of great significance for early intervention. Selain itu, knowing the degree of severity in ASD and how it changes with the intervention is imperative for the treatment process. This study proposes Takagi- Sugeno-Kang (TSK) fuzzy modeling approach that is based on subtractive clustering to classify autism spectrum disorder and to estimate the degree of prognosis. The study has been carried out using Electroencephalography (LIHAT) signal on two groups of control and ASD children age-matched between seven to nine years old. EEG signals are quantized to temporal-time domain using Short Time Frequency Transformation (STFT). Spectrum energy is extracted as features for alpha band. The proposed system is modeled to estimate the degree in which subject is autistic, normal or uncertain. The results show accuracy in range (70-97) % when using fuzzy model .Also this system is modeled to generate crisp decision; the results show accuracy in the range (80-100) %. The proposed model can be adapted to help psychiatrist for diagnosis and intervention process. © 2012 Springer-Verlag.}, nota = {dipetik oleh 2}, kata kunci = {Gangguan Spektrum Autisme, Pengelasan (maklumat), Data Processing, Detection and Estimation, Penyakit, Campur Tangan Awal, EEG Signals, Elektrofisiologi, Fuzzy Approach, Fuzzy Modeling, Spectrum Energy, Subtractive Clustering, Time-Frequency Transformation, Treatment Process}, pubstate = {diterbitkan}, tppubtype = {artikel} } Early detection of autism spectrum disorder (ASD) is of great significance for early intervention. Selain itu, knowing the degree of severity in ASD and how it changes with the intervention is imperative for the treatment process. This study proposes Takagi- Sugeno-Kang (TSK) fuzzy modeling approach that is based on subtractive clustering to classify autism spectrum disorder and to estimate the degree of prognosis. The study has been carried out using Electroencephalography (LIHAT) signal on two groups of control and ASD children age-matched between seven to nine years old. EEG signals are quantized to temporal-time domain using Short Time Frequency Transformation (STFT). Spectrum energy is extracted as features for alpha band. The proposed system is modeled to estimate the degree in which subject is autistic, normal or uncertain. The results show accuracy in range (70-97) % when using fuzzy model .Also this system is modeled to generate crisp decision; the results show accuracy in the range (80-100) %. The proposed model can be adapted to help psychiatrist for diagnosis and intervention process. © 2012 Springer-Verlag. |
1995 |
Kasmini, K; Zasmani, S Sindrom Asperger: laporan dua kes dari Malaysia. Artikel Jurnal Jurnal perubatan Singapura, 36 (6), hlm. 641-643, 1995, ISSN: 00375675, (dipetik oleh 2). Abstrak | Pautan | BibTeX | Tag: Artikel, Autisme, Gangguan Spektrum Autisme, Laporan kes, Gangguan Perkembangan Kanak-kanak, Anak-anak, Pengelasan (maklumat), Manusia, Gangguan Perkembangan Bahasa, Ketidakupayaan Bahasa, Malaysia, Lelaki, Meresap, Skala Penarafan Status Psikiatri, Aspek Psikologi, Skala Penarafan Psikologi, Kelakuan Sosial, Kelakuan Stereotaip, Stereotaip, Sindrom @artikel{Kasmini1995641, tajuk = {Sindrom Asperger: laporan dua kes dari Malaysia.}, pengarang = {K Kasmini dan S Zasmani}, url = {https://www.scopus.com/inward/record.uri?eid = 2-s2.0-0029445569&rakan kongsi = 40&md5 = 6280382e5c679f84eea178a916b2e19f}, terbitan = {00375675}, tahun = {1995}, tarikh = {1995-01-01}, jurnal = {Jurnal perubatan Singapura}, isi padu = {36}, nombor = {6}, halaman = {641-643}, abstrak = {Sindrom Asperger adalah varian autisme yang berbeza, dengan kadar kelaziman sebanyak 10 ke 26 per 10,000 kecerdasan normal, dan 0.4 per 10,000 pada mereka yang mengalami kerencatan mental ringan. Sindrom ini kini mempunyai kriteria entiti dan diagnostiknya sendiri. Ia secara rasmi disenaraikan dalam ICD-10 di bawah gangguan perkembangan yang meluas. Dua kes seperti ini dijelaskan dalam artikel ini. Kes Satu tidak mempunyai kemampuan untuk berhubungan dengan orang lain, terlalu sibuk dengan pelakon mendiang P. Ramlee dan memperlihatkan tingkah laku pelik menggunakan sikat gigi pada masa kecilnya. Secara kognitif, dia tidak dapat mensintesis perkataan menjadi ayat yang bermakna. Begitu juga, Kes Kedua tidak dapat berhubungan baik dengan yang lain dan sibuk dengan planet dan burujnya. Walaupun dia tampil cerdas dengan skor IQ 101, dia tidak dapat mengikuti arahan di sekolah. Kedua-dua anak mengalami kekejangan motor dan memenuhi kriteria untuk diagnosis Sindrom Asperger.}, nota = {dipetik oleh 2}, kata kunci = {Artikel, Autisme, Gangguan Spektrum Autisme, Laporan kes, Gangguan Perkembangan Kanak-kanak, Anak-anak, Pengelasan (maklumat), Manusia, Gangguan Perkembangan Bahasa, Ketidakupayaan Bahasa, Malaysia, Lelaki, Meresap, Skala Penarafan Status Psikiatri, Aspek Psikologi, Skala Penarafan Psikologi, Kelakuan Sosial, Kelakuan Stereotaip, Stereotaip, Sindrom}, pubstate = {diterbitkan}, tppubtype = {artikel} } Sindrom Asperger adalah varian autisme yang berbeza, dengan kadar kelaziman sebanyak 10 ke 26 per 10,000 kecerdasan normal, dan 0.4 per 10,000 pada mereka yang mengalami kerencatan mental ringan. Sindrom ini kini mempunyai kriteria entiti dan diagnostiknya sendiri. Ia secara rasmi disenaraikan dalam ICD-10 di bawah gangguan perkembangan yang meluas. Dua kes seperti ini dijelaskan dalam artikel ini. Kes Satu tidak mempunyai kemampuan untuk berhubungan dengan orang lain, terlalu sibuk dengan pelakon mendiang P. Ramlee dan memperlihatkan tingkah laku pelik menggunakan sikat gigi pada masa kecilnya. Secara kognitif, dia tidak dapat mensintesis perkataan menjadi ayat yang bermakna. Begitu juga, Kes Kedua tidak dapat berhubungan baik dengan yang lain dan sibuk dengan planet dan burujnya. Walaupun dia tampil cerdas dengan skor IQ 101, dia tidak dapat mengikuti arahan di sekolah. Kedua-dua anak mengalami kekejangan motor dan memenuhi kriteria untuk diagnosis Sindrom Asperger. |
2019 |
Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2019, ISBN: 9781728130415, (dipetik oleh 0). |
Penilaian ke atas Algoritma Pembelajaran Mesin untuk Klasifikasi Gangguan Spektrum Autisme (ASD) Persidangan 1372 (1), Institut Penerbitan Fizik, 2019, ISSN: 17426588, (dipetik oleh 0). |
2018 |
Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Artikel Jurnal Computer Methods and Programs in Biomedicine, 155 , hlm. 39-51, 2018, ISSN: 01692607, (dipetik oleh 21). |
2017 |
Feature extraction of autism gait data using principal component analysis and linear discriminant analysis Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2017, ISBN: 9781509009251, (dipetik oleh 0). |
Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM Artikel Jurnal PLoS SATU, 12 (11), 2017, ISSN: 19326203, (dipetik oleh 11). |
2016 |
Classification of autism children gait patterns using Neural Network and Support Vector Machine Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2016, ISBN: 9781509015436, (dipetik oleh 5). |
2013 |
Source-temporal-features for detection EEG behavior of autism spectrum disorder Persidangan 2013, ISBN: 9781479901340, (dipetik oleh 1). |
2012 |
Fuzzy model for detection and estimation of the degree of autism spectrum disorder Artikel Jurnal Nota Kuliah dalam Sains Komputer (termasuk subseries Nota Kuliah dalam Artificial Intelligence dan Lecture Notes dalam Bioinformatics), 7666 LNCS (PART 4), hlm. 372-379, 2012, ISSN: 03029743, (dipetik oleh 2). |
1995 |
Sindrom Asperger: laporan dua kes dari Malaysia. Artikel Jurnal Jurnal perubatan Singapura, 36 (6), hlm. 641-643, 1995, ISSN: 00375675, (dipetik oleh 2). |