2019 |
Hasan, C Z C; Jailani, R; Tahir, N M 2018-Oktober , Institut Jurutera Elektrik dan Elektronik Inc., 2019, ISSN: 21593442, (dipetik oleh 0). Abstrak | Pautan | BibTeX | Tag: 10 Pengesahan Lipatan Silang, 3D Pemodelan, Gangguan Spektrum Autisme, Biofizik, Membuat Keputusan Klinikal, Diagnosis Berbantu Komputer, Membuat keputusan, Analisis Diskriminan, Penyakit, Analisis Gait, Klasifikasi Gait, Angkatan Tindak Balas Tanah, Rangkaian Neural, Teknik Parameterisasi, Pengecaman Corak, Penilaian Takungan Petroleum, Diagnostik Program, Mesin Vektor Sokongan, Rawatan yang disasarkan, Tiga Dimensi @ persidangan{Hasan20192436, tajuk = {Pengelasan ANN dan SVM dalam Mengenal pasti Gait Gangguan Autisme Spectrum Berdasarkan Angkatan Reaksi Tanah Tiga Dimensi}, pengarang = {C Z C Hasan and R Jailani and N M Tahir}, url = {https://www.scopus.com/inward/record.uri?eid = 2-s2.0-85063202256&doi=10.1109/TENCON.2018.8650468&rakan kongsi = 40&md5 = c697d0c43ebd77d76d74cb3726872f42}, doi = {10.1109/TENCON.2018.8650468}, terbitan = {21593442}, tahun = {2019}, tarikh = {2019-01-01}, jurnal = {Wilayah IEEE 10 Persidangan Antarabangsa Tahunan, Prosiding / TENCON}, isi padu = {2018-Oktober}, halaman = {2436-2440}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {Gangguan spektrum autisme (ASD) adalah keadaan perkembangan saraf yang kompleks dan sepanjang hayat yang berlaku pada awal kanak-kanak dan dikaitkan dengan pergerakan dan gangguan berjalan yang tidak biasa. Pengiktirafan ASD kiprah automatik dan tepat memberikan bantuan dalam diagnosis dan membuat keputusan klinikal serta meningkatkan rawatan yang disasarkan. Makalah ini meneroka penggunaan dua pengelasan pembelajaran mesin yang terkenal, rangkaian saraf tiruan (ANN) dan menyokong mesin vektor (SVM) dalam membezakan ASD dan corak gaya berjalan normal berdasarkan ciri-ciri gaya berjalan yang berasal dari tiga dimensi (3D) daya tindak balas tanah (GRF) data. Data GRF 3D dari 30 kanak-kanak dengan ASD dan 30 kebiasaannya kanak-kanak yang sedang berkembang diperoleh menggunakan dua plat kekuatan semasa kelajuan berjalan kaki tanpa alas kaki. Teknik parameterisasi siri masa diterapkan pada bentuk gelombang 3D GRF untuk mengekstrak ciri gaya penting. Kaedah analisis diskriminan bertahap (SWDA) digunakan untuk menentukan ciri gaya GRF yang dominan untuk mengklasifikasikan ASD dan kumpulan yang biasanya berkembang. Hasil ujian pengesahan silang 10 kali ganda menunjukkan bahawa model ANN dengan tiga ciri input GRF yang dominan mengatasi model SVM berasaskan kernel dengan 93.3% ketepatan, 96.7% kepekaan, dan 90.0% kekhususan. Dapatan kajian ini menunjukkan kebolehpercayaan menggunakan ciri input 3D GRF, dalam kombinasi dengan pemilihan ciri SWDA dan model klasifikasi ANN sebagai kaedah yang sesuai yang mungkin bermanfaat untuk diagnosis kiprah ASD dan juga untuk tujuan penilaian program rawatan. © 2018 IEEE.}, nota = {dipetik oleh 0}, kata kunci = {10 Pengesahan Lipatan Silang, 3D Pemodelan, Gangguan Spektrum Autisme, Biofizik, Membuat Keputusan Klinikal, Diagnosis Berbantu Komputer, Membuat keputusan, Analisis Diskriminan, Penyakit, Analisis Gait, Klasifikasi Gait, Angkatan Tindak Balas Tanah, Rangkaian Neural, Teknik Parameterisasi, Pengecaman Corak, Penilaian Takungan Petroleum, Diagnostik Program, Mesin Vektor Sokongan, Rawatan yang disasarkan, Tiga Dimensi}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Gangguan spektrum autisme (ASD) adalah keadaan perkembangan saraf yang kompleks dan sepanjang hayat yang berlaku pada awal kanak-kanak dan dikaitkan dengan pergerakan dan gangguan berjalan yang tidak biasa. Pengiktirafan ASD kiprah automatik dan tepat memberikan bantuan dalam diagnosis dan membuat keputusan klinikal serta meningkatkan rawatan yang disasarkan. Makalah ini meneroka penggunaan dua pengelasan pembelajaran mesin yang terkenal, rangkaian saraf tiruan (ANN) dan menyokong mesin vektor (SVM) dalam membezakan ASD dan corak gaya berjalan normal berdasarkan ciri-ciri gaya berjalan yang berasal dari tiga dimensi (3D) daya tindak balas tanah (GRF) data. Data GRF 3D dari 30 kanak-kanak dengan ASD dan 30 kebiasaannya kanak-kanak yang sedang berkembang diperoleh menggunakan dua plat kekuatan semasa kelajuan berjalan kaki tanpa alas kaki. Teknik parameterisasi siri masa diterapkan pada bentuk gelombang 3D GRF untuk mengekstrak ciri gaya penting. Kaedah analisis diskriminan bertahap (SWDA) digunakan untuk menentukan ciri gaya GRF yang dominan untuk mengklasifikasikan ASD dan kumpulan yang biasanya berkembang. Hasil ujian pengesahan silang 10 kali ganda menunjukkan bahawa model ANN dengan tiga ciri input GRF yang dominan mengatasi model SVM berasaskan kernel dengan 93.3% ketepatan, 96.7% kepekaan, dan 90.0% kekhususan. Dapatan kajian ini menunjukkan kebolehpercayaan menggunakan ciri input 3D GRF, dalam kombinasi dengan pemilihan ciri SWDA dan model klasifikasi ANN sebagai kaedah yang sesuai yang mungkin bermanfaat untuk diagnosis kiprah ASD dan juga untuk tujuan penilaian program rawatan. © 2018 IEEE. |
Misman, M F; Samah, A A; Ezudin, F A; Majid, H A; Shah, Z A; Hashim, H; Harun, M F Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2019, ISBN: 9781728130415, (dipetik oleh 0). Abstrak | Pautan | BibTeX | Tag: Gangguan Spektrum Autisme, Gangguan Otak, Pengelasan (maklumat), Ketepatan Pengelasan, Kaedah Pengelasan, Ujian Klinikal, Kemahiran Kognitif, Diagnosis Berbantu Komputer, Pembelajaran Mendalam, Rangkaian Neural Dalam, Penyakit, Belajar, Kaedah Pembelajaran Mesin, Data Saringan, Mesin Vektor Sokongan @ persidangan{Misman201929, tajuk = {Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam}, pengarang = {M F Misman dan A A Samah dan F A Ezudin dan H A Majid dan Z A Shah dan H Hashim dan M F Harun}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079349811&doi=10.1109/AiDAS47888.2019.8970823&rakan kongsi = 40&md5=dd727e950667359680a6dbcc4855422f}, doi = {10.1109/AiDAS47888.2019.8970823}, isbn = {9781728130415}, tahun = {2019}, tarikh = {2019-01-01}, jurnal = {Prosiding - 2019 1st Persidangan Antarabangsa mengenai Kepintaran Buatan dan Sains Data, Gema 2019}, halaman = {29-34}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {Gangguan Spektrum Autisme (ASD) adalah gangguan otak perkembangan yang menyebabkan defisit dalam linguistik, komunikatif, dan kemahiran kognitif serta kemahiran sosial. Pelbagai aplikasi Pembelajaran Mesin telah digunakan selain daripada ujian klinikal yang ada, yang telah meningkatkan prestasi dalam diagnosis gangguan ini. Dalam kajian ini, kami menggunakan Rangkaian Neural Dalam (DNN) seni bina, yang telah menjadi kaedah popular dalam beberapa tahun kebelakangan ini dan terbukti meningkatkan ketepatan pengelasan. Kajian ini bertujuan untuk menganalisis prestasi model DNN dalam diagnosis ASD dari segi ketepatan klasifikasi dengan menggunakan dua set data saringan ASD dewasa.. Hasilnya kemudian dibandingkan dengan kaedah Pembelajaran Mesin sebelumnya oleh penyelidik lain, iaitu Mesin Vektor Sokongan (SVM). Ketepatan yang dicapai oleh model DNN dalam klasifikasi diagnosis ASD ialah 99.40% pada set data pertama dan dicapai 96.08% pada set data kedua. Sementara itu, model SVM mencapai ketepatan 95.24% dan 95.08% menggunakan data pertama dan kedua, masing-masing. Keputusan menunjukkan bahawa kes ASD boleh dikenal pasti dengan tepat dengan melaksanakan kaedah pengelasan DNN menggunakan data saringan dewasa ASD. © 2019 IEEE.}, nota = {dipetik oleh 0}, kata kunci = {Gangguan Spektrum Autisme, Gangguan Otak, Pengelasan (maklumat), Ketepatan Pengelasan, Kaedah Pengelasan, Ujian Klinikal, Kemahiran Kognitif, Diagnosis Berbantu Komputer, Pembelajaran Mendalam, Rangkaian Neural Dalam, Penyakit, Belajar, Kaedah Pembelajaran Mesin, Data Saringan, Mesin Vektor Sokongan}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Gangguan Spektrum Autisme (ASD) adalah gangguan otak perkembangan yang menyebabkan defisit dalam linguistik, komunikatif, dan kemahiran kognitif serta kemahiran sosial. Pelbagai aplikasi Pembelajaran Mesin telah digunakan selain daripada ujian klinikal yang ada, yang telah meningkatkan prestasi dalam diagnosis gangguan ini. Dalam kajian ini, kami menggunakan Rangkaian Neural Dalam (DNN) seni bina, yang telah menjadi kaedah popular dalam beberapa tahun kebelakangan ini dan terbukti meningkatkan ketepatan pengelasan. Kajian ini bertujuan untuk menganalisis prestasi model DNN dalam diagnosis ASD dari segi ketepatan klasifikasi dengan menggunakan dua set data saringan ASD dewasa.. Hasilnya kemudian dibandingkan dengan kaedah Pembelajaran Mesin sebelumnya oleh penyelidik lain, iaitu Mesin Vektor Sokongan (SVM). Ketepatan yang dicapai oleh model DNN dalam klasifikasi diagnosis ASD ialah 99.40% pada set data pertama dan dicapai 96.08% pada set data kedua. Sementara itu, model SVM mencapai ketepatan 95.24% dan 95.08% menggunakan data pertama dan kedua, masing-masing. Keputusan menunjukkan bahawa kes ASD boleh dikenal pasti dengan tepat dengan melaksanakan kaedah pengelasan DNN menggunakan data saringan dewasa ASD. © 2019 IEEE. |
2017 |
Ilias, S; Tahir, N M; Jailani, R Feature extraction of autism gait data using principal component analysis and linear discriminant analysis Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2017, ISBN: 9781509009251, (dipetik oleh 0). Abstrak | Pautan | BibTeX | Tag: Pengelasan (maklumat), Analisis Diskriminan, Penyakit, Pengekstrakan, Pengekstrakan Ciri, Analisis Gait, Klasifikasi Gait, Image Retrieval, Elektronik Perindustrian, Kernel Function, Kinematic Parameters, Kinematik, Belajar, Analisis Diskriminasi Linear, Machine Learning Approaches, Sistem Analisis Pergerakan, Polynomial Functions, Analisis Komponen Utama, Mesin Vektor Sokongan, SVM Classifiers @ persidangan{Ilias2017275, tajuk = {Feature extraction of autism gait data using principal component analysis and linear discriminant analysis}, pengarang = {S Ilias and N M Tahir and R Jailani}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85034081031&doi=10.1109%2fIEACON.2016.8067391&rakan kongsi = 40&md5=7deaef6538413df7bfaf7cf723001d72}, doi = {10.1109/IEACON.2016.8067391}, isbn = {9781509009251}, tahun = {2017}, tarikh = {2017-01-01}, jurnal = {IEACon 2016 - 2016 IEEE Industrial Electronics and Applications Conference}, halaman = {275-279}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {Dalam penyelidikan ini, the application of machine learning approach specifically support vector machine along with principal component analysis and linear discriminant analysis as feature extractions are evaluated and validated in discriminating gait features between normal subjects and autism children. Gait features of 32 normal and 12 autism children were recorded and analyzed using VICON motion analysis system and a force platform during normal walking. Di sini, twenty one gait features describing the three types of gait characteristics namely basic, kinetic and kinematic in these children are extracted. Selanjutnya, with these gait features as input during classification, the ability of SVM as classifier are investigated using three different kernel functions specifically linear, polynomial, and radial basis. Results showed that LDA as feature extraction is the highest accuracy with kinematic parameters as gait features along with polynomial function as kernel for the SVM classifier. This finding proven that LDA is suitable as feature extraction and SVM is indeed apt as gait classifier in classifying the gait pattern autism and normal children. © 2016 IEEE.}, nota = {dipetik oleh 0}, kata kunci = {Pengelasan (maklumat), Analisis Diskriminan, Penyakit, Pengekstrakan, Pengekstrakan Ciri, Analisis Gait, Klasifikasi Gait, Image Retrieval, Elektronik Perindustrian, Kernel Function, Kinematic Parameters, Kinematik, Belajar, Analisis Diskriminasi Linear, Machine Learning Approaches, Sistem Analisis Pergerakan, Polynomial Functions, Analisis Komponen Utama, Mesin Vektor Sokongan, SVM Classifiers}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Dalam penyelidikan ini, the application of machine learning approach specifically support vector machine along with principal component analysis and linear discriminant analysis as feature extractions are evaluated and validated in discriminating gait features between normal subjects and autism children. Gait features of 32 normal and 12 autism children were recorded and analyzed using VICON motion analysis system and a force platform during normal walking. Di sini, twenty one gait features describing the three types of gait characteristics namely basic, kinetic and kinematic in these children are extracted. Selanjutnya, with these gait features as input during classification, the ability of SVM as classifier are investigated using three different kernel functions specifically linear, polynomial, and radial basis. Results showed that LDA as feature extraction is the highest accuracy with kinematic parameters as gait features along with polynomial function as kernel for the SVM classifier. This finding proven that LDA is suitable as feature extraction and SVM is indeed apt as gait classifier in classifying the gait pattern autism and normal children. © 2016 IEEE. |
Hameed, S S; Hassan, R; Muhammad, F F Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM Artikel Jurnal PLoS SATU, 12 (11), 2017, ISSN: 19326203, (dipetik oleh 11). Abstrak | Pautan | BibTeX | Tag: Ketepatan, Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Gen CAPS2, Pengelasan (maklumat), Pengelas, Kajian Eksperimen, Gen, Ekspresi Gen, Pengenalan Gen, Persatuan Genetik, Prosedur Genetik, Risiko Genetik, Genetik, Algoritma Mesin Vektor Sokongan Pengoptimuman Zarah Perduaan Perduaan Geometri, Manusia, Penilaian risiko, Penyeragaman, Penapis Statistik, Parameter Statistik, Statistik, Mesin Vektor Sokongan @artikel{Hameed2017, tajuk = {Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM}, pengarang = {S S Hameed dan R Hassan dan F F Muhammad}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033361187&doi=10.1371/journal.pone.0187371&rakan kongsi = 40&md5=f9260d41165145f229a3cf157699635e}, doi = {10.1371/jurnal.pone.0187371}, terbitan = {19326203}, tahun = {2017}, tarikh = {2017-01-01}, jurnal = {PLoS SATU}, isi padu = {12}, nombor = {11}, penerbit = {Perpustakaan Awam Sains}, abstrak = {Dalam kerja ini, ekspresi gen dalam gangguan spektrum autisme (ASD) dianalisis dengan matlamat untuk memilih gen yang paling dikaitkan dan melaksanakan pengelasan. Objektif ini dicapai dengan menggunakan gabungan pelbagai penapis statistik dan mesin vektor sokongan pengoptimuman zarah binari geometri berasaskan pembalut (GBPSO-SVM) algoritma. Penggunaan penapis yang berbeza telah diserlahkan dengan memasukkan kriteria nisbah min dan median untuk membuang gen yang sangat serupa. Keputusan menunjukkan bahawa gen yang paling diskriminatif yang dikenal pasti dalam langkah pemilihan pertama dan terakhir termasuk kehadiran gen berulang. (CAPS2), yang ditugaskan sebagai gen yang paling berkaitan dengan risiko ASD. Subset gen gabungan yang dipilih oleh algoritma GBPSO-SVM dapat meningkatkan ketepatan klasifikasi. © 2017 Hameed et al. Ini ialah artikel akses terbuka yang diedarkan di bawah syarat Lesen Atribusi Creative Commons, yang membenarkan penggunaan tanpa had, pengedaran, dan pembiakan dalam mana-mana medium, dengan syarat penulis dan sumber asal dikreditkan.}, nota = {dipetik oleh 11}, kata kunci = {Ketepatan, Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Gen CAPS2, Pengelasan (maklumat), Pengelas, Kajian Eksperimen, Gen, Ekspresi Gen, Pengenalan Gen, Persatuan Genetik, Prosedur Genetik, Risiko Genetik, Genetik, Algoritma Mesin Vektor Sokongan Pengoptimuman Zarah Perduaan Perduaan Geometri, Manusia, Penilaian risiko, Penyeragaman, Penapis Statistik, Parameter Statistik, Statistik, Mesin Vektor Sokongan}, pubstate = {diterbitkan}, tppubtype = {artikel} } Dalam kerja ini, ekspresi gen dalam gangguan spektrum autisme (ASD) dianalisis dengan matlamat untuk memilih gen yang paling dikaitkan dan melaksanakan pengelasan. Objektif ini dicapai dengan menggunakan gabungan pelbagai penapis statistik dan mesin vektor sokongan pengoptimuman zarah binari geometri berasaskan pembalut (GBPSO-SVM) algoritma. Penggunaan penapis yang berbeza telah diserlahkan dengan memasukkan kriteria nisbah min dan median untuk membuang gen yang sangat serupa. Keputusan menunjukkan bahawa gen yang paling diskriminatif yang dikenal pasti dalam langkah pemilihan pertama dan terakhir termasuk kehadiran gen berulang. (CAPS2), yang ditugaskan sebagai gen yang paling berkaitan dengan risiko ASD. Subset gen gabungan yang dipilih oleh algoritma GBPSO-SVM dapat meningkatkan ketepatan klasifikasi. © 2017 Hameed et al. Ini ialah artikel akses terbuka yang diedarkan di bawah syarat Lesen Atribusi Creative Commons, yang membenarkan penggunaan tanpa had, pengedaran, dan pembiakan dalam mana-mana medium, dengan syarat penulis dan sumber asal dikreditkan. |
2016 |
Ilias, S; Tahir, N M; Jailani, R; Hasan, C Z C Classification of autism children gait patterns using Neural Network and Support Vector Machine Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2016, ISBN: 9781509015436, (dipetik oleh 5). Abstrak | Pautan | BibTeX | Tag: Accuracy Rate, Autisme, Pengelasan (maklumat), Penyakit, Analisis Gait, Gait Parameters, Corak Gait, Elektronik Perindustrian, Kinematik, Rangkaian Neural, NN Classifiers, Kepekaan dan Kekhususan, Mesin Vektor Sokongan, Three Categories @ persidangan{Ilias201652, tajuk = {Classification of autism children gait patterns using Neural Network and Support Vector Machine}, pengarang = {S Ilias and N M Tahir and R Jailani and C Z C Hasan}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84992135613&doi=10.1109%2fISCAIE.2016.7575036&rakan kongsi = 40&md5=55c6d166768ed5fa3b504a2bd3441829}, doi = {10.1109/ISCAIE.2016.7575036}, isbn = {9781509015436}, tahun = {2016}, tarikh = {2016-01-01}, jurnal = {ISCA 2016 - 2016 Simposium IEEE mengenai Aplikasi Komputer dan Elektronik Industri}, halaman = {52-56}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {Dalam kajian ini, we deemed further to evaluate the performance of Neural Network (NN) and Support Vector Machine (SVM) in classifying the gait patterns between autism and normal children. Pertama, temporal spatial, kinetic and kinematic gait parameters of forty four subjects namely thirty two normal subjects and twelve autism children are acquired. Seterusnya, these three category gait parameters acted as inputs to both classifiers. Results showed that fusion of temporal spatial and kinematic contributed the highest accuracy rate for NN classifier specifically 95% whilst SVM with polynomial as kernel, 95% accuracy rate is contributed by fusion of all gait parameters as inputs to the classifier. Sebagai tambahan, the classifiers performance is validated by computing both value of sensitivity and specificity. With SVM using polynomial as kernel, sensitivity attained is 100% indicated that the classifier's ability to perfectly discriminate normal subjects from autism subjects whilst 85% specificity showed that SVM is able to identify autism subjects as autism based on their gait patterns at 85% rate. © 2016 IEEE.}, nota = {dipetik oleh 5}, kata kunci = {Accuracy Rate, Autisme, Pengelasan (maklumat), Penyakit, Analisis Gait, Gait Parameters, Corak Gait, Elektronik Perindustrian, Kinematik, Rangkaian Neural, NN Classifiers, Kepekaan dan Kekhususan, Mesin Vektor Sokongan, Three Categories}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Dalam kajian ini, we deemed further to evaluate the performance of Neural Network (NN) and Support Vector Machine (SVM) in classifying the gait patterns between autism and normal children. Pertama, temporal spatial, kinetic and kinematic gait parameters of forty four subjects namely thirty two normal subjects and twelve autism children are acquired. Seterusnya, these three category gait parameters acted as inputs to both classifiers. Results showed that fusion of temporal spatial and kinematic contributed the highest accuracy rate for NN classifier specifically 95% whilst SVM with polynomial as kernel, 95% accuracy rate is contributed by fusion of all gait parameters as inputs to the classifier. Sebagai tambahan, the classifiers performance is validated by computing both value of sensitivity and specificity. With SVM using polynomial as kernel, sensitivity attained is 100% indicated that the classifier's ability to perfectly discriminate normal subjects from autism subjects whilst 85% specificity showed that SVM is able to identify autism subjects as autism based on their gait patterns at 85% rate. © 2016 IEEE. |
2019 |
2018-Oktober , Institut Jurutera Elektrik dan Elektronik Inc., 2019, ISSN: 21593442, (dipetik oleh 0). |
Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2019, ISBN: 9781728130415, (dipetik oleh 0). |
2017 |
Feature extraction of autism gait data using principal component analysis and linear discriminant analysis Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2017, ISBN: 9781509009251, (dipetik oleh 0). |
Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM Artikel Jurnal PLoS SATU, 12 (11), 2017, ISSN: 19326203, (dipetik oleh 11). |
2016 |
Classification of autism children gait patterns using Neural Network and Support Vector Machine Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2016, ISBN: 9781509015436, (dipetik oleh 5). |