2018 |
Hariharan, M; Sindhu, R; Vijean, V; Yazid, H; Nadarajaw, T; Yaacob, S; Polat, K Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Artikel Jurnal Computer Methods and Programs in Biomedicine, 155 , hlm. 39-51, 2018, ISSN: 01692607, (dipetik oleh 21). Abstrak | Pautan | BibTeX | Tag: Accidents, Algoritma, Artikel, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Pengelasan (maklumat), Classification Algorithm, Pengelas, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Pengekstrakan, Extreme Learning Machine, Factual, Factual Database, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Fuzzy System, Hearing Impairment, Manusia, Kelaparan, Bayi, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Belajar, Linear Predictive Coding, Pembelajaran Mesin, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Pekali Cepstral Frekuensi Mel, Multi-Class Classification, Rangkaian Neural, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Patofisiologi, Prematurity, Kebolehulangan, Kebolehulangan Keputusan, Pemprosesan isyarat, Pengenalan suara, Wavelet Analysis, Wavelet Packet, Paket Wavelet Berubah @artikel{Hariharan201839, tajuk = {Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification}, pengarang = {M Hariharan and R Sindhu and V Vijean and H Yazid and T Nadarajaw and S Yaacob and K Polat}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036611215&doi=10.1016%2fj.cmpb.2017.11.021&rakan kongsi = 40&md5=1f3b17817b00f07cadad6eb61c0f4bf9}, doi = {10.1016/j.cmpb.2017.11.021}, terbitan = {01692607}, tahun = {2018}, tarikh = {2018-01-01}, jurnal = {Computer Methods and Programs in Biomedicine}, isi padu = {155}, halaman = {39-51}, penerbit = {Elsevier Ireland Ltd}, abstrak = {Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. Dalam kerja ini, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) dan 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) dan 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 ciri-ciri), Linear Predictive Coding (LPC) based cepstral features (56 ciri-ciri), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 ciri-ciri). The combined feature set consists of 568 ciri-ciri. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Akhirnya, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V.}, nota = {dipetik oleh 21}, kata kunci = {Accidents, Algoritma, Artikel, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Pengelasan (maklumat), Classification Algorithm, Pengelas, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Pengekstrakan, Extreme Learning Machine, Factual, Factual Database, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Fuzzy System, Hearing Impairment, Manusia, Kelaparan, Bayi, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Belajar, Linear Predictive Coding, Pembelajaran Mesin, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Pekali Cepstral Frekuensi Mel, Multi-Class Classification, Rangkaian Neural, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Patofisiologi, Prematurity, Kebolehulangan, Kebolehulangan Keputusan, Pemprosesan isyarat, Pengenalan suara, Wavelet Analysis, Wavelet Packet, Paket Wavelet Berubah}, pubstate = {diterbitkan}, tppubtype = {artikel} } Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. Dalam kerja ini, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) dan 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) dan 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 ciri-ciri), Linear Predictive Coding (LPC) based cepstral features (56 ciri-ciri), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 ciri-ciri). The combined feature set consists of 568 ciri-ciri. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Akhirnya, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V. |
2017 |
Hameed, S S; Hassan, R; Muhammad, F F Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM Artikel Jurnal PLoS SATU, 12 (11), 2017, ISSN: 19326203, (dipetik oleh 11). Abstrak | Pautan | BibTeX | Tag: Ketepatan, Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Gen CAPS2, Pengelasan (maklumat), Pengelas, Kajian Eksperimen, Gen, Ekspresi Gen, Pengenalan Gen, Persatuan Genetik, Prosedur Genetik, Risiko Genetik, Genetik, Algoritma Mesin Vektor Sokongan Pengoptimuman Zarah Perduaan Perduaan Geometri, Manusia, Penilaian risiko, Penyeragaman, Penapis Statistik, Parameter Statistik, Statistik, Mesin Vektor Sokongan @artikel{Hameed2017, tajuk = {Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM}, pengarang = {S S Hameed dan R Hassan dan F F Muhammad}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033361187&doi=10.1371/journal.pone.0187371&rakan kongsi = 40&md5=f9260d41165145f229a3cf157699635e}, doi = {10.1371/jurnal.pone.0187371}, terbitan = {19326203}, tahun = {2017}, tarikh = {2017-01-01}, jurnal = {PLoS SATU}, isi padu = {12}, nombor = {11}, penerbit = {Perpustakaan Awam Sains}, abstrak = {Dalam kerja ini, ekspresi gen dalam gangguan spektrum autisme (ASD) dianalisis dengan matlamat untuk memilih gen yang paling dikaitkan dan melaksanakan pengelasan. Objektif ini dicapai dengan menggunakan gabungan pelbagai penapis statistik dan mesin vektor sokongan pengoptimuman zarah binari geometri berasaskan pembalut (GBPSO-SVM) algoritma. Penggunaan penapis yang berbeza telah diserlahkan dengan memasukkan kriteria nisbah min dan median untuk membuang gen yang sangat serupa. Keputusan menunjukkan bahawa gen yang paling diskriminatif yang dikenal pasti dalam langkah pemilihan pertama dan terakhir termasuk kehadiran gen berulang. (CAPS2), yang ditugaskan sebagai gen yang paling berkaitan dengan risiko ASD. Subset gen gabungan yang dipilih oleh algoritma GBPSO-SVM dapat meningkatkan ketepatan klasifikasi. © 2017 Hameed et al. Ini ialah artikel akses terbuka yang diedarkan di bawah syarat Lesen Atribusi Creative Commons, yang membenarkan penggunaan tanpa had, pengedaran, dan pembiakan dalam mana-mana medium, dengan syarat penulis dan sumber asal dikreditkan.}, nota = {dipetik oleh 11}, kata kunci = {Ketepatan, Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Gen CAPS2, Pengelasan (maklumat), Pengelas, Kajian Eksperimen, Gen, Ekspresi Gen, Pengenalan Gen, Persatuan Genetik, Prosedur Genetik, Risiko Genetik, Genetik, Algoritma Mesin Vektor Sokongan Pengoptimuman Zarah Perduaan Perduaan Geometri, Manusia, Penilaian risiko, Penyeragaman, Penapis Statistik, Parameter Statistik, Statistik, Mesin Vektor Sokongan}, pubstate = {diterbitkan}, tppubtype = {artikel} } Dalam kerja ini, ekspresi gen dalam gangguan spektrum autisme (ASD) dianalisis dengan matlamat untuk memilih gen yang paling dikaitkan dan melaksanakan pengelasan. Objektif ini dicapai dengan menggunakan gabungan pelbagai penapis statistik dan mesin vektor sokongan pengoptimuman zarah binari geometri berasaskan pembalut (GBPSO-SVM) algoritma. Penggunaan penapis yang berbeza telah diserlahkan dengan memasukkan kriteria nisbah min dan median untuk membuang gen yang sangat serupa. Keputusan menunjukkan bahawa gen yang paling diskriminatif yang dikenal pasti dalam langkah pemilihan pertama dan terakhir termasuk kehadiran gen berulang. (CAPS2), yang ditugaskan sebagai gen yang paling berkaitan dengan risiko ASD. Subset gen gabungan yang dipilih oleh algoritma GBPSO-SVM dapat meningkatkan ketepatan klasifikasi. © 2017 Hameed et al. Ini ialah artikel akses terbuka yang diedarkan di bawah syarat Lesen Atribusi Creative Commons, yang membenarkan penggunaan tanpa had, pengedaran, dan pembiakan dalam mana-mana medium, dengan syarat penulis dan sumber asal dikreditkan. |
2014 |
Batt, S; Acharya, U R; Adeli, H; Tenusu, G M; Adeli, A Automated diagnosis of autism: In search of a mathematical marker Artikel Jurnal Reviews in the Neurosciences, 25 (6), hlm. 851-861, 2014, ISSN: 03341763, (dipetik oleh 34). Abstrak | Pautan | BibTeX | Tag: Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Automasi, Biological Model, Otak, Chaos Theory, Correlation Analysis, Detrended Fluctuation Analysis, Disease Marker, Electrode, Elektroencephalogram, Elektroensefalografi, Entropy, Fourier Transformation, Fractal Analysis, Frequency Domain Analysis, Manusia, Mathematical Analysis, Mathematical Marker, Mathematical Parameters, Models, Neurologic Disease, Neurological, Nonlinear Dynamics, Nonlinear System, Patofisiologi, Jurnal Keutamaan, Prosedur, Pemprosesan isyarat, Model Statistik, Masa, Time Frequency Analysis, Wavelet Analysis @artikel{Bhat2014851, tajuk = {Automated diagnosis of autism: In search of a mathematical marker}, pengarang = {S Bhat and U R Acharya and H Adeli and G M Bairy and A Adeli}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925286949&doi=10.1515%2frevneuro-2014-0036&rakan kongsi = 40&md5=04858a5c9860e9027e3113835ca2e11f}, doi = {10.1515/revneuro-2014-0036}, terbitan = {03341763}, tahun = {2014}, tarikh = {2014-01-01}, jurnal = {Reviews in the Neurosciences}, isi padu = {25}, nombor = {6}, halaman = {851-861}, penerbit = {Walter de Gruyter GmbH}, abstrak = {Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (LIHAT). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-theart review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEGbased diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder. © 2014 Walter de Gruyter GmbH.}, nota = {dipetik oleh 34}, kata kunci = {Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Automasi, Biological Model, Otak, Chaos Theory, Correlation Analysis, Detrended Fluctuation Analysis, Disease Marker, Electrode, Elektroencephalogram, Elektroensefalografi, Entropy, Fourier Transformation, Fractal Analysis, Frequency Domain Analysis, Manusia, Mathematical Analysis, Mathematical Marker, Mathematical Parameters, Models, Neurologic Disease, Neurological, Nonlinear Dynamics, Nonlinear System, Patofisiologi, Jurnal Keutamaan, Prosedur, Pemprosesan isyarat, Model Statistik, Masa, Time Frequency Analysis, Wavelet Analysis}, pubstate = {diterbitkan}, tppubtype = {artikel} } Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (LIHAT). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-theart review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEGbased diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder. © 2014 Walter de Gruyter GmbH. |
2011 |
Iradah, Laman web I; Rabiah, Seorang K EduTism: An assistive educational system for the treatment of autism children with intelligent approach Artikel Jurnal Nota Kuliah dalam Sains Komputer (termasuk subseries Nota Kuliah dalam Artificial Intelligence dan Lecture Notes dalam Bioinformatics), 7067 LNCS (PART 2), hlm. 193-204, 2011, ISSN: 03029743, (dipetik oleh 3). Abstrak | Pautan | BibTeX | Tag: Algoritma, Membantu, Campur Tangan Autisme, Pengumpulan data, Penyakit, E-pembelajaran, Pendidikan, Perisian Pendidikan, Educational Systems, High-Functioning Autism, Sains Maklumat, Intelligent Approach, Malaysia, Multimedia Systems, Rule Based, Software Testing, Prestasi Pelajar, Pelajar @artikel{SitiIradah2011193, tajuk = {EduTism: An assistive educational system for the treatment of autism children with intelligent approach}, pengarang = {I Siti Iradah and A K Rabiah}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-81255214646&doi=10.1007%2f978-3-642-25200-6_19&rakan kongsi = 40&md5=85447136ace048f4543c86a103c8a786}, doi = {10.1007/978-3-642-25200-6_19}, terbitan = {03029743}, tahun = {2011}, tarikh = {2011-01-01}, jurnal = {Nota Kuliah dalam Sains Komputer (termasuk subseries Nota Kuliah dalam Artificial Intelligence dan Lecture Notes dalam Bioinformatics)}, isi padu = {7067 LNCS}, nombor = {PART 2}, halaman = {193-204}, abstrak = {This paper presents the development of an assistive educational system with intelligent approach which can be a basic electronic training and treatment tool to assist children with high-functioning autism. The plan is to bring these changes through the use of rules based algorithm as an approach to decide which level difficulty of the system should go according to the autism student performance based on the percentage of score. By applying this approach, the system will be able to monitor and analyze the performance of intelligent of autism student's capabilities. The system is capable to control the particular level of the autism students should play. It is capable to replace the teacher's responsibilities in terms of monitoring the student's progress and performance. Testing was conducted in Autism Intervention Programme of The National Autism Society of Malaysia (NASOM) at Malacca branch. Results and findings from this testing support the idea that educational software may be one of an effective and practical tool for teaching academic skills to autism children. Having programssuch asEduTism can improve effectiveness and efficiency of data collection tracking and reporting for the teachers and parents. © 2011 Springer-Verlag.}, nota = {dipetik oleh 3}, kata kunci = {Algoritma, Membantu, Campur Tangan Autisme, Pengumpulan data, Penyakit, E-pembelajaran, Pendidikan, Perisian Pendidikan, Educational Systems, High-Functioning Autism, Sains Maklumat, Intelligent Approach, Malaysia, Multimedia Systems, Rule Based, Software Testing, Prestasi Pelajar, Pelajar}, pubstate = {diterbitkan}, tppubtype = {artikel} } This paper presents the development of an assistive educational system with intelligent approach which can be a basic electronic training and treatment tool to assist children with high-functioning autism. The plan is to bring these changes through the use of rules based algorithm as an approach to decide which level difficulty of the system should go according to the autism student performance based on the percentage of score. By applying this approach, the system will be able to monitor and analyze the performance of intelligent of autism student's capabilities. The system is capable to control the particular level of the autism students should play. It is capable to replace the teacher's responsibilities in terms of monitoring the student's progress and performance. Testing was conducted in Autism Intervention Programme of The National Autism Society of Malaysia (NASOM) at Malacca branch. Results and findings from this testing support the idea that educational software may be one of an effective and practical tool for teaching academic skills to autism children. Having programssuch asEduTism can improve effectiveness and efficiency of data collection tracking and reporting for the teachers and parents. © 2011 Springer-Verlag. |
2018 |
Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Artikel Jurnal Computer Methods and Programs in Biomedicine, 155 , hlm. 39-51, 2018, ISSN: 01692607, (dipetik oleh 21). |
2017 |
Pemilihan dan klasifikasi ekspresi gen dalam gangguan autisme: Penggunaan gabungan penapis statistik dan algoritma GBPSO-SVM Artikel Jurnal PLoS SATU, 12 (11), 2017, ISSN: 19326203, (dipetik oleh 11). |
2014 |
Automated diagnosis of autism: In search of a mathematical marker Artikel Jurnal Reviews in the Neurosciences, 25 (6), hlm. 851-861, 2014, ISSN: 03341763, (dipetik oleh 34). |
2011 |
EduTism: An assistive educational system for the treatment of autism children with intelligent approach Artikel Jurnal Nota Kuliah dalam Sains Komputer (termasuk subseries Nota Kuliah dalam Artificial Intelligence dan Lecture Notes dalam Bioinformatics), 7067 LNCS (PART 2), hlm. 193-204, 2011, ISSN: 03029743, (dipetik oleh 3). |