2017 |
Hakim, N H A; Majlis, B Y; Suzuki, H; Tsukahara, T Neuron-specific splicing Artikel Jurnal BioScience Trends, 11 (1), hlm. 16-22, 2017, ISSN: 18817815, (dipetik oleh 0). Abstrak | Pautan | BibTeX | Tag: Alternative RNA Splicing, Alternative Splicing, Haiwan, Antibody Specificity, Biological, Biological Model, Penyakit, Genetik, Manusia, Metabolisme, Models, Nerve Cell, Neurons, Organ Specificity, RNA Splicing @artikel{Hakim201716, tajuk = {Neuron-specific splicing}, pengarang = {N H A Hakim and B Y Majlis and H Suzuki and T Tsukahara}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014435502&doi=10.5582%2fbst.2016.01169&rakan kongsi = 40&md5=8a5044dbf3b905fc2553520a048bcd59}, doi = {10.5582/bst.2016.01169}, terbitan = {18817815}, tahun = {2017}, tarikh = {2017-01-01}, jurnal = {BioScience Trends}, isi padu = {11}, nombor = {1}, halaman = {16-22}, penerbit = {International Advancement Center for Medicine and Health Research Co., Ltd.}, abstrak = {During pre-mRNA splicing events, introns are removed from the pre-mRNA, and the remaining exons are connected together to form a single continuous molecule. Alternative splicing is a common mechanism for the regulation of gene expression in eukaryotes. More than 90% of human genes are known to undergo alternative splicing. The most common type of alternative splicing is exon skipping, which is also known as cassette exon. Other known alternative splicing events include alternative 5' splice sites, alternative 3' splice sites, intron retention, and mutually exclusive exons. Alternative splicing events are controlled by regulatory proteins responsible for both positive and negative regulation. Dalam ulasan ini, we focus on neuronal splicing regulators and discuss several notable regulators in depth. Sebagai tambahan, we have also included an example of splicing regulation mediated by the RBFox protein family. Akhir kata, as previous studies have shown that a number of splicing factors are associated with neuronal diseases such as Alzheime's disease (AD) and Autism spectrum disorder (ASD), here we consider their importance in neuronal diseases wherein the underlying mechanisms have yet to be elucidated.}, nota = {dipetik oleh 0}, kata kunci = {Alternative RNA Splicing, Alternative Splicing, Haiwan, Antibody Specificity, Biological, Biological Model, Penyakit, Genetik, Manusia, Metabolisme, Models, Nerve Cell, Neurons, Organ Specificity, RNA Splicing}, pubstate = {diterbitkan}, tppubtype = {artikel} } During pre-mRNA splicing events, introns are removed from the pre-mRNA, and the remaining exons are connected together to form a single continuous molecule. Alternative splicing is a common mechanism for the regulation of gene expression in eukaryotes. More than 90% of human genes are known to undergo alternative splicing. The most common type of alternative splicing is exon skipping, which is also known as cassette exon. Other known alternative splicing events include alternative 5' splice sites, alternative 3' splice sites, intron retention, and mutually exclusive exons. Alternative splicing events are controlled by regulatory proteins responsible for both positive and negative regulation. Dalam ulasan ini, we focus on neuronal splicing regulators and discuss several notable regulators in depth. Sebagai tambahan, we have also included an example of splicing regulation mediated by the RBFox protein family. Akhir kata, as previous studies have shown that a number of splicing factors are associated with neuronal diseases such as Alzheime's disease (AD) and Autism spectrum disorder (ASD), here we consider their importance in neuronal diseases wherein the underlying mechanisms have yet to be elucidated. |
2015 |
Pelik, B; Jomhari, N; Ahmad, R Visual Hybrid Development Learning System (VHDLS) Framework for Children with Autism Artikel Jurnal Jurnal Autisme dan Gangguan Perkembangan, 45 (10), hlm. 3069-3084, 2015, ISSN: 01623257, (dipetik oleh 7). Abstrak | Pautan | BibTeX | Tag: Artikel, Perhatian, Autisme, Gangguan Spektrum Autisme, Anak-anak, Computer Interface, Pendidikan, Education of Intellectually Disabled, Educational Model, Feedback System, Perempuan, Manusia, Belajar, Lelaki, Models, Occupational Therapist, Prasekolah, Kanak-kanak Prasekolah, Jurnal Keutamaan, Prosedur, Psikologi, Kualiti hidup, Treatment Duration, Antara Muka Pengguna, Visual Hybrid Development Learning System, Visual Stimulation @artikel{Banire20153069, tajuk = {Visual Hybrid Development Learning System (VHDLS) Framework for Children with Autism}, pengarang = {B Banire and N Jomhari and R Ahmad}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84941942795&doi=10.1007%2fs10803-015-2469-7&rakan kongsi = 40&md5=3c5ecc776725aea4e585e17a1ae805c7}, doi = {10.1007/s10803-015-2469-7}, terbitan = {01623257}, tahun = {2015}, tarikh = {2015-01-01}, jurnal = {Jurnal Autisme dan Gangguan Perkembangan}, isi padu = {45}, nombor = {10}, halaman = {3069-3084}, penerbit = {Springer New York LLC}, abstrak = {The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. Dalam kajian ini, we proposed a Visual Hybrid Development Learning System (VHDLS) framework that is based on an instructional design model, multimedia cognitive learning theory, and learning style in order to guide software developers in developing learning systems for children with autism. The results from this study showed that the attention of children with autism increased more with the proposed VHDLS framework. © 2015, Springer Science + Business Media New York.}, nota = {dipetik oleh 7}, kata kunci = {Artikel, Perhatian, Autisme, Gangguan Spektrum Autisme, Anak-anak, Computer Interface, Pendidikan, Education of Intellectually Disabled, Educational Model, Feedback System, Perempuan, Manusia, Belajar, Lelaki, Models, Occupational Therapist, Prasekolah, Kanak-kanak Prasekolah, Jurnal Keutamaan, Prosedur, Psikologi, Kualiti hidup, Treatment Duration, Antara Muka Pengguna, Visual Hybrid Development Learning System, Visual Stimulation}, pubstate = {diterbitkan}, tppubtype = {artikel} } The effect of education on children with autism serves as a relative cure for their deficits. As a result of this, they require special techniques to gain their attention and interest in learning as compared to typical children. Several studies have shown that these children are visual learners. Dalam kajian ini, we proposed a Visual Hybrid Development Learning System (VHDLS) framework that is based on an instructional design model, multimedia cognitive learning theory, and learning style in order to guide software developers in developing learning systems for children with autism. The results from this study showed that the attention of children with autism increased more with the proposed VHDLS framework. © 2015, Springer Science + Business Media New York. |
2014 |
Batt, S; Acharya, U R; Adeli, H; Tenusu, G M; Adeli, A Automated diagnosis of autism: In search of a mathematical marker Artikel Jurnal Reviews in the Neurosciences, 25 (6), hlm. 851-861, 2014, ISSN: 03341763, (dipetik oleh 34). Abstrak | Pautan | BibTeX | Tag: Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Automasi, Biological Model, Otak, Chaos Theory, Correlation Analysis, Detrended Fluctuation Analysis, Disease Marker, Electrode, Elektroencephalogram, Elektroensefalografi, Entropy, Fourier Transformation, Fractal Analysis, Frequency Domain Analysis, Manusia, Mathematical Analysis, Mathematical Marker, Mathematical Parameters, Models, Neurologic Disease, Neurological, Nonlinear Dynamics, Nonlinear System, Patofisiologi, Jurnal Keutamaan, Prosedur, Pemprosesan isyarat, Model Statistik, Masa, Time Frequency Analysis, Wavelet Analysis @artikel{Bhat2014851, tajuk = {Automated diagnosis of autism: In search of a mathematical marker}, pengarang = {S Bhat and U R Acharya and H Adeli and G M Bairy and A Adeli}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925286949&doi=10.1515%2frevneuro-2014-0036&rakan kongsi = 40&md5=04858a5c9860e9027e3113835ca2e11f}, doi = {10.1515/revneuro-2014-0036}, terbitan = {03341763}, tahun = {2014}, tarikh = {2014-01-01}, jurnal = {Reviews in the Neurosciences}, isi padu = {25}, nombor = {6}, halaman = {851-861}, penerbit = {Walter de Gruyter GmbH}, abstrak = {Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (LIHAT). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-theart review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEGbased diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder. © 2014 Walter de Gruyter GmbH.}, nota = {dipetik oleh 34}, kata kunci = {Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Automasi, Biological Model, Otak, Chaos Theory, Correlation Analysis, Detrended Fluctuation Analysis, Disease Marker, Electrode, Elektroencephalogram, Elektroensefalografi, Entropy, Fourier Transformation, Fractal Analysis, Frequency Domain Analysis, Manusia, Mathematical Analysis, Mathematical Marker, Mathematical Parameters, Models, Neurologic Disease, Neurological, Nonlinear Dynamics, Nonlinear System, Patofisiologi, Jurnal Keutamaan, Prosedur, Pemprosesan isyarat, Model Statistik, Masa, Time Frequency Analysis, Wavelet Analysis}, pubstate = {diterbitkan}, tppubtype = {artikel} } Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (LIHAT). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-theart review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEGbased diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder. © 2014 Walter de Gruyter GmbH. |
Ujianadminnaacuitm2020-05-28T06:49:14+00:00
2017 |
Neuron-specific splicing Artikel Jurnal BioScience Trends, 11 (1), hlm. 16-22, 2017, ISSN: 18817815, (dipetik oleh 0). |
2015 |
Visual Hybrid Development Learning System (VHDLS) Framework for Children with Autism Artikel Jurnal Jurnal Autisme dan Gangguan Perkembangan, 45 (10), hlm. 3069-3084, 2015, ISSN: 01623257, (dipetik oleh 7). |
2014 |
Automated diagnosis of autism: In search of a mathematical marker Artikel Jurnal Reviews in the Neurosciences, 25 (6), hlm. 851-861, 2014, ISSN: 03341763, (dipetik oleh 34). |