2018 |
Al-Hiyali, M Saya; Ishak, A J; Harun, H; Ahmad, S A; Sulaiman, Wan W A Tinjauan dalam mengubah suai tingkah laku pengambilan makanan oleh rangsangan otak: Kes berat badan berlebihan Artikel Jurnal Kuantologi Neuro, 16 (12), hlm. 86-97, 2018, ISSN: 13035150, (dipetik oleh 2). Abstrak | Pautan | BibTeX | Tag: Amygdala, Anoksia, Artikel, Autisme, Gangguan pesta minum-minum makan, Berat badan, Berat badan, Rangsangan Kedalaman Otak, Depolarisasi, Pengambilan diet, Keinginan Dadah, Gangguan Makan, Arus elektrik, Elektroencephalogram, Elektroensefalografi, Penggunaan tenaga, Penggunaan tenaga, Tingkah Laku Makan, Pengambilan makanan, Pengimejan Resonans Magnetik Berfungsi, Jantina, Status kesihatan, Homeostasis, Manusia, Kelaparan, Gaya hidup, Potensi Mantap Membran Sel Saraf, Keseronokan Saraf, Neurofeedback, Neuromodulasi, Penilaian Pemakanan, Penilaian Hasil, Soal selidik, Rangsangan Magnetik Transkranial Berulang, Pemprosesan isyarat, Latihan, Rangsangan Arus Langsung Transkranial, Rangsangan Magnetik Transkranial, Berat badan kurang @artikel{Al-Hiyali201886, tajuk = {Tinjauan dalam mengubah suai tingkah laku pengambilan makanan oleh rangsangan otak: Kes berat badan berlebihan}, pengarang = {M I Al-Hiyali dan A J Ishak dan H Harun dan S A Ahmad dan W A Wan Sulaiman}, url = {https://www.scopus.com/inward/record.uri?eid = 2-s2.0-85062843670&doi = 10.14704% 2fnq.2018.16.12.1894&rakan kongsi = 40&md5 = 235f66cef05a144be23472641f70bd1d}, doi = {10.14704/nq.2018.16.12.1894}, terbitan = {13035150}, tahun = {2018}, tarikh = {2018-01-01}, jurnal = {Kuantologi Neuro}, isi padu = {16}, nombor = {12}, halaman = {86-97}, penerbit = {Penerbit Anka}, abstrak = {Obesiti dan berat badan berlebihan sering ditetapkan untuk disfungsi dalam tingkah laku pengambilan makanan. Kerana banyaknya kegemukan pada tahun lalu, terdapat permintaan untuk lebih banyak kajian yang bertujuan untuk mengubah tingkah laku pengambilan makanan. Selama beberapa dekad yang lalu, banyak kajian telah dilakukan untuk mengubah pengambilan makanan melalui latihan otak atau rangsangan. Ulasan ini untuk kajian neurosains dalam mengubah tingkah laku pengambilan makanan, ia melibatkan tiga bahagian; Bahagian pertama menjelaskan peranan aktiviti otak dalam peraturan pengambilan makanan, idea umum mengenai alat bioperubatan dalam tingkah laku pengambilan makanan dibincangkan di bahagian kedua dan bahagian ketiga yang difokuskan pada sistem rangsangan otak. Akhirnya, makalah ini disimpulkan dengan perkara utama yang perlu diambil kira semasa merancang kajian eksperimental untuk mengubah tingkah laku pengambilan makanan oleh rangsangan otak mengikut cadangan dan cabaran kajian sebelumnya. © 2018, Penerbit Anka. Hak cipta terpelihara.}, nota = {dipetik oleh 2}, kata kunci = {Amygdala, Anoksia, Artikel, Autisme, Gangguan pesta minum-minum makan, Berat badan, Berat badan, Rangsangan Kedalaman Otak, Depolarisasi, Pengambilan diet, Keinginan Dadah, Gangguan Makan, Arus elektrik, Elektroencephalogram, Elektroensefalografi, Penggunaan tenaga, Penggunaan tenaga, Tingkah Laku Makan, Pengambilan makanan, Pengimejan Resonans Magnetik Berfungsi, Jantina, Status kesihatan, Homeostasis, Manusia, Kelaparan, Gaya hidup, Potensi Mantap Membran Sel Saraf, Keseronokan Saraf, Neurofeedback, Neuromodulasi, Penilaian Pemakanan, Penilaian Hasil, Soal selidik, Rangsangan Magnetik Transkranial Berulang, Pemprosesan isyarat, Latihan, Rangsangan Arus Langsung Transkranial, Rangsangan Magnetik Transkranial, Berat badan kurang}, pubstate = {diterbitkan}, tppubtype = {artikel} } Obesiti dan berat badan berlebihan sering ditetapkan untuk disfungsi dalam tingkah laku pengambilan makanan. Kerana banyaknya kegemukan pada tahun lalu, terdapat permintaan untuk lebih banyak kajian yang bertujuan untuk mengubah tingkah laku pengambilan makanan. Selama beberapa dekad yang lalu, banyak kajian telah dilakukan untuk mengubah pengambilan makanan melalui latihan otak atau rangsangan. Ulasan ini untuk kajian neurosains dalam mengubah tingkah laku pengambilan makanan, ia melibatkan tiga bahagian; Bahagian pertama menjelaskan peranan aktiviti otak dalam peraturan pengambilan makanan, idea umum mengenai alat bioperubatan dalam tingkah laku pengambilan makanan dibincangkan di bahagian kedua dan bahagian ketiga yang difokuskan pada sistem rangsangan otak. Akhirnya, makalah ini disimpulkan dengan perkara utama yang perlu diambil kira semasa merancang kajian eksperimental untuk mengubah tingkah laku pengambilan makanan oleh rangsangan otak mengikut cadangan dan cabaran kajian sebelumnya. © 2018, Penerbit Anka. Hak cipta terpelihara. |
Hariharan, M; Sindhu, R; Vijean, V; Yazid, H; Nadarajaw, T; Yaacob, S; Polat, K Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Artikel Jurnal Computer Methods and Programs in Biomedicine, 155 , hlm. 39-51, 2018, ISSN: 01692607, (dipetik oleh 21). Abstrak | Pautan | BibTeX | Tag: Accidents, Algoritma, Artikel, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Pengelasan (maklumat), Classification Algorithm, Pengelas, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Pengekstrakan, Extreme Learning Machine, Factual, Factual Database, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Fuzzy System, Hearing Impairment, Manusia, Kelaparan, Bayi, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Belajar, Linear Predictive Coding, Pembelajaran Mesin, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Pekali Cepstral Frekuensi Mel, Multi-Class Classification, Rangkaian Neural, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Patofisiologi, Prematurity, Kebolehulangan, Kebolehulangan Keputusan, Pemprosesan isyarat, Pengenalan suara, Wavelet Analysis, Wavelet Packet, Paket Wavelet Berubah @artikel{Hariharan201839, tajuk = {Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification}, pengarang = {M Hariharan and R Sindhu and V Vijean and H Yazid and T Nadarajaw and S Yaacob and K Polat}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036611215&doi=10.1016%2fj.cmpb.2017.11.021&rakan kongsi = 40&md5=1f3b17817b00f07cadad6eb61c0f4bf9}, doi = {10.1016/j.cmpb.2017.11.021}, terbitan = {01692607}, tahun = {2018}, tarikh = {2018-01-01}, jurnal = {Computer Methods and Programs in Biomedicine}, isi padu = {155}, halaman = {39-51}, penerbit = {Elsevier Ireland Ltd}, abstrak = {Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. Dalam kerja ini, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) dan 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) dan 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 ciri-ciri), Linear Predictive Coding (LPC) based cepstral features (56 ciri-ciri), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 ciri-ciri). The combined feature set consists of 568 ciri-ciri. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Akhirnya, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V.}, nota = {dipetik oleh 21}, kata kunci = {Accidents, Algoritma, Artikel, Artificial Neural Network, Asphyxia, Binary Dragonfly Optimization Aalgorithm, Pengelasan (maklumat), Classification Algorithm, Pengelas, Coding, Computer-Assisted, Constants and Coefficients, Crying, Database Systems, Databases, Deafness, Diagnosis, Energy, Entropy, Pengekstrakan, Extreme Learning Machine, Factual, Factual Database, Pengekstrakan Ciri, Kaedah Pemilihan Ciri, Fuzzy System, Hearing Impairment, Manusia, Kelaparan, Bayi, Infant Cry, Infant Cry Classifications, Jaundice, Kernel Method, Belajar, Linear Predictive Coding, Pembelajaran Mesin, Mathematical Transformations, Mel Frequency Cepstral Coefficient, Pekali Cepstral Frekuensi Mel, Multi-Class Classification, Rangkaian Neural, Nonlinear Dynamics, Nonlinear System, Optimization, Pain, Patofisiologi, Prematurity, Kebolehulangan, Kebolehulangan Keputusan, Pemprosesan isyarat, Pengenalan suara, Wavelet Analysis, Wavelet Packet, Paket Wavelet Berubah}, pubstate = {diterbitkan}, tppubtype = {artikel} } Background and objective Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. Dalam kerja ini, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Methods Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) dan 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) dan 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 ciri-ciri), Linear Predictive Coding (LPC) based cepstral features (56 ciri-ciri), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 ciri-ciri). The combined feature set consists of 568 ciri-ciri. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Akhirnya, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Results Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. Conclusion The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals. © 2017 Elsevier B.V. |
2014 |
Batt, S; Acharya, U R; Adeli, H; Tenusu, G M; Adeli, A Automated diagnosis of autism: In search of a mathematical marker Artikel Jurnal Reviews in the Neurosciences, 25 (6), hlm. 851-861, 2014, ISSN: 03341763, (dipetik oleh 34). Abstrak | Pautan | BibTeX | Tag: Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Automasi, Biological Model, Otak, Chaos Theory, Correlation Analysis, Detrended Fluctuation Analysis, Disease Marker, Electrode, Elektroencephalogram, Elektroensefalografi, Entropy, Fourier Transformation, Fractal Analysis, Frequency Domain Analysis, Manusia, Mathematical Analysis, Mathematical Marker, Mathematical Parameters, Models, Neurologic Disease, Neurological, Nonlinear Dynamics, Nonlinear System, Patofisiologi, Jurnal Keutamaan, Prosedur, Pemprosesan isyarat, Model Statistik, Masa, Time Frequency Analysis, Wavelet Analysis @artikel{Bhat2014851, tajuk = {Automated diagnosis of autism: In search of a mathematical marker}, pengarang = {S Bhat and U R Acharya and H Adeli and G M Bairy and A Adeli}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925286949&doi=10.1515%2frevneuro-2014-0036&rakan kongsi = 40&md5=04858a5c9860e9027e3113835ca2e11f}, doi = {10.1515/revneuro-2014-0036}, terbitan = {03341763}, tahun = {2014}, tarikh = {2014-01-01}, jurnal = {Reviews in the Neurosciences}, isi padu = {25}, nombor = {6}, halaman = {851-861}, penerbit = {Walter de Gruyter GmbH}, abstrak = {Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (LIHAT). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-theart review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEGbased diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder. © 2014 Walter de Gruyter GmbH.}, nota = {dipetik oleh 34}, kata kunci = {Algoritma, Artikel, Autisme, Gangguan Spektrum Autisme, Automasi, Biological Model, Otak, Chaos Theory, Correlation Analysis, Detrended Fluctuation Analysis, Disease Marker, Electrode, Elektroencephalogram, Elektroensefalografi, Entropy, Fourier Transformation, Fractal Analysis, Frequency Domain Analysis, Manusia, Mathematical Analysis, Mathematical Marker, Mathematical Parameters, Models, Neurologic Disease, Neurological, Nonlinear Dynamics, Nonlinear System, Patofisiologi, Jurnal Keutamaan, Prosedur, Pemprosesan isyarat, Model Statistik, Masa, Time Frequency Analysis, Wavelet Analysis}, pubstate = {diterbitkan}, tppubtype = {artikel} } Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (LIHAT). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-theart review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEGbased diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder. © 2014 Walter de Gruyter GmbH. |
Sudirman, R; Hussin, S S Sensory responses of autism via electroencephalography for Sensory Profile Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2014, ISBN: 9781479956869, (dipetik oleh 3). Abstrak | Pautan | BibTeX | Tag: Autisme, Discrete Wavelet Transforms, Penyakit, Elektroensefalografi, Elektrofisiologi, Analisis Komponen Bebas, International System, Belajar, Analisis Deria, Profil Deria, Sensory Profiling, Rangsangan Deria, Pemprosesan isyarat, Standard Deviation, Paket Wavelet Berubah @ persidangan{Sudirman2014626, tajuk = {Sensory responses of autism via electroencephalography for Sensory Profile}, pengarang = {R Sudirman and S S Hussin}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84946435600&doi=10.1109%2fICCSCE.2014.7072794&rakan kongsi = 40&md5=3e6f1cfe19eae4fad359d2493aebd7e0}, doi = {10.1109/ICCSCE.2014.7072794}, isbn = {9781479956869}, tahun = {2014}, tarikh = {2014-01-01}, jurnal = {Prosiding - 4th IEEE International Conference on Control System, Pengkomputeran dan Kejuruteraan, ICCSCE 2014}, halaman = {626-631}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {The aim of this study is to investigate the brain signals of autism children through electroencephalography (LIHAT) associated to physical tasks. The physical task was meant to stimulate the sensitivity correlation of sensory response of a child. A group of autism children was chosen for this study and were given by five sensory stimulations which are audio, rasa, sentuhan, visual and vestibular. The acquisition of brain signals was acquainted using EEG Neurofax 9200 and the electrode positions were using 10-20 International System placements. The preprocessing signals were analyzed using independent component analysis (ICA) using EEGLAB Software and Discrete Wavelet Transform (DWT). The alpha wave was selected by level 6 decomposition and the extracted features represents the characteristic of the sensory task. The means, standard deviations and approximation entropy were extracted on the clean signals and forms into Sensory Profile (Sensory Profiling). From the overall results, the behavior of each autism children has been observed unstable emotion while running the sensory stimulation. The observation also helps to improve their learning strategy for the future work in assessment. © 2014 IEEE.}, nota = {dipetik oleh 3}, kata kunci = {Autisme, Discrete Wavelet Transforms, Penyakit, Elektroensefalografi, Elektrofisiologi, Analisis Komponen Bebas, International System, Belajar, Analisis Deria, Profil Deria, Sensory Profiling, Rangsangan Deria, Pemprosesan isyarat, Standard Deviation, Paket Wavelet Berubah}, pubstate = {diterbitkan}, tppubtype = {persidangan} } The aim of this study is to investigate the brain signals of autism children through electroencephalography (LIHAT) associated to physical tasks. The physical task was meant to stimulate the sensitivity correlation of sensory response of a child. A group of autism children was chosen for this study and were given by five sensory stimulations which are audio, rasa, sentuhan, visual and vestibular. The acquisition of brain signals was acquainted using EEG Neurofax 9200 and the electrode positions were using 10-20 International System placements. The preprocessing signals were analyzed using independent component analysis (ICA) using EEGLAB Software and Discrete Wavelet Transform (DWT). The alpha wave was selected by level 6 decomposition and the extracted features represents the characteristic of the sensory task. The means, standard deviations and approximation entropy were extracted on the clean signals and forms into Sensory Profile (Sensory Profiling). From the overall results, the behavior of each autism children has been observed unstable emotion while running the sensory stimulation. The observation also helps to improve their learning strategy for the future work in assessment. © 2014 IEEE. |
2013 |
Selvaraj, J; Murugappan, M; Van, K; Yaacob, S Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst Artikel Jurnal BioMedical Engineering Online, 12 (1), 2013, ISSN: 1475925X, (dipetik oleh 42). Abstrak | Pautan | BibTeX | Tag: Remaja, Dewasa, Aged, Artikel, Audio-Visual Stimulus, Autonomous Nervous Systems, Anak-anak, Ketepatan Pengelasan, Computer Based Training, Computer-Assisted, Electrocardiogram Signal, Electrocardiography, Emosi, Perempuan, Fuzzy K-nearest Neighbor, Higher-Order Statistic (HOS), Manusia, Kecacatan Intelektual, Sistem Komputer Interaktif, Metodologi, Pertengahan umur, Nonlinear Dynamics, Nonlinear System, Prosedur, Real Time Systems, Pemprosesan isyarat, Statistik, Dewasa Muda @artikel{Selvaraj2013, tajuk = {Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst}, pengarang = {J Selvaraj and M Murugappan and K Wan and S Yaacob}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879017985&doi=10.1186%2f1475-925X-12-44&rakan kongsi = 40&md5=18c5309ac9f3017f455480f1ff732a30}, doi = {10.1186/1475-925X-12-44}, terbitan = {1475925X}, tahun = {2013}, tarikh = {2013-01-01}, jurnal = {BioMedical Engineering Online}, isi padu = {12}, nombor = {1}, penerbit = {BioMed Central Ltd.}, abstrak = {Latar belakang: Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. Walau bagaimanapun, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals.Methods: Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature 'Hurst' was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers - Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm.Results: Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (hlm < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% and 76.45% for classifying the six emotional states using random and subject independent validation respectively.Conclusions: The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system. © 2013 Selvaraj et al.; licensee BioMed Central Ltd.}, nota = {dipetik oleh 42}, kata kunci = {Remaja, Dewasa, Aged, Artikel, Audio-Visual Stimulus, Autonomous Nervous Systems, Anak-anak, Ketepatan Pengelasan, Computer Based Training, Computer-Assisted, Electrocardiogram Signal, Electrocardiography, Emosi, Perempuan, Fuzzy K-nearest Neighbor, Higher-Order Statistic (HOS), Manusia, Kecacatan Intelektual, Sistem Komputer Interaktif, Metodologi, Pertengahan umur, Nonlinear Dynamics, Nonlinear System, Prosedur, Real Time Systems, Pemprosesan isyarat, Statistik, Dewasa Muda}, pubstate = {diterbitkan}, tppubtype = {artikel} } Latar belakang: Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. Walau bagaimanapun, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals.Methods: Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature 'Hurst' was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers - Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm.Results: Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (hlm < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% dan 76.45% for classifying the six emotional states using random and subject independent validation respectively.Conclusions: The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system. © 2013 Selvaraj et al.; licensee BioMed Central Ltd. |
2012 |
Shamsuddin, S; Yussof, H; Ismail, L; Hanapiah, F A; Mohamed, S; Piah, H A; Zahari, N Saya Tindak balas awal kanak-kanak autistik dalam terapi interaksi manusia-robot dengan robot humanoid NAO Persidangan 2012, ISBN: 9781467309615, (dipetik oleh 103). Abstrak | Pautan | BibTeX | Tag: Robot Anthropomorphic, Gangguan Spektrum Autisme, Kanak-kanak Autistik, Kanak-kanak dengan Autisme, Gangguan Perkembangan, Penyakit, Interaksi Komputer Manusia, Interaksi Robot Manusia, Robot Humanoid, Sistem Mesin Manusia, Eksperimen Juruterbang, Robotik Pemulihan, Penyelidikan, Robotik, Pemprosesan isyarat, Sistem Visual @ persidangan{Shamsuddin2012188, tajuk = {Tindak balas awal kanak-kanak autistik dalam terapi interaksi manusia-robot dengan robot humanoid NAO}, pengarang = {S Shamsuddin dan H Yussof dan L Ismail dan F A Hanapiah dan S Mohamed dan HA Piah dan N I Zahari}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861537641&doi = 10.1109% 2fCSPA.2012.6194716&rakan kongsi = 40&md5=32572eb3ebc7d201c02a90908128ae28}, doi = {10.1109/CSPA.2012.6194716}, isbn = {9781467309615}, tahun = {2012}, tarikh = {2012-01-01}, jurnal = {Prosiding - 2012 Kolokium Antarabangsa IEEE ke-8 mengenai Pemprosesan Isyarat dan Aplikasinya, CSPA 2012}, halaman = {188-193}, abstrak = {Konteks keseluruhan yang dicadangkan dalam kertas ini adalah sebahagian daripada matlamat lama kami untuk menyumbang kepada sekumpulan komuniti yang mengalami Gangguan Spektrum Autisme (ASD); kecacatan perkembangan seumur hidup. Objektif kertas ini adalah untuk membentangkan pembangunan protokol percubaan perintis kami di mana kanak-kanak dengan ASD akan didedahkan kepada robot humanoid NAO. humanoid boleh diprogramkan sepenuhnya ini menawarkan platform penyelidikan yang ideal untuk interaksi manusia-robot (HR). Kajian ini berfungsi sebagai platform untuk penyiasatan asas untuk melihat tindak balas dan tingkah laku awal kanak-kanak dalam persekitaran tersebut. Sistem ini menggunakan kamera luaran, selain sistem visual robot itu sendiri. Keputusan yang dijangkakan adalah tindak balas dan tindak balas awal sebenar kanak-kanak ASD semasa HRI dengan robot humanoid. Ini akan membawa kepada penyesuaian prosedur baru dalam terapi ASD berdasarkan HRI, terutamanya bagi orang bukan pakar teknikal untuk terlibat dalam intervensi robotik semasa sesi terapi. © 2012 IEEE.}, nota = {dipetik oleh 103}, kata kunci = {Robot Anthropomorphic, Gangguan Spektrum Autisme, Kanak-kanak Autistik, Kanak-kanak dengan Autisme, Gangguan Perkembangan, Penyakit, Interaksi Komputer Manusia, Interaksi Robot Manusia, Robot Humanoid, Sistem Mesin Manusia, Eksperimen Juruterbang, Robotik Pemulihan, Penyelidikan, Robotik, Pemprosesan isyarat, Sistem Visual}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Konteks keseluruhan yang dicadangkan dalam kertas ini adalah sebahagian daripada matlamat lama kami untuk menyumbang kepada sekumpulan komuniti yang mengalami Gangguan Spektrum Autisme (ASD); kecacatan perkembangan seumur hidup. Objektif kertas ini adalah untuk membentangkan pembangunan protokol percubaan perintis kami di mana kanak-kanak dengan ASD akan didedahkan kepada robot humanoid NAO. humanoid boleh diprogramkan sepenuhnya ini menawarkan platform penyelidikan yang ideal untuk interaksi manusia-robot (HR). Kajian ini berfungsi sebagai platform untuk penyiasatan asas untuk melihat tindak balas dan tingkah laku awal kanak-kanak dalam persekitaran tersebut. Sistem ini menggunakan kamera luaran, selain sistem visual robot itu sendiri. Keputusan yang dijangkakan adalah tindak balas dan tindak balas awal sebenar kanak-kanak ASD semasa HRI dengan robot humanoid. Ini akan membawa kepada penyesuaian prosedur baru dalam terapi ASD berdasarkan HRI, terutamanya bagi orang bukan pakar teknikal untuk terlibat dalam intervensi robotik semasa sesi terapi. © 2012 IEEE. |
2018 |
Tinjauan dalam mengubah suai tingkah laku pengambilan makanan oleh rangsangan otak: Kes berat badan berlebihan Artikel Jurnal Kuantologi Neuro, 16 (12), hlm. 86-97, 2018, ISSN: 13035150, (dipetik oleh 2). |
Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification Artikel Jurnal Computer Methods and Programs in Biomedicine, 155 , hlm. 39-51, 2018, ISSN: 01692607, (dipetik oleh 21). |
2014 |
Automated diagnosis of autism: In search of a mathematical marker Artikel Jurnal Reviews in the Neurosciences, 25 (6), hlm. 851-861, 2014, ISSN: 03341763, (dipetik oleh 34). |
Sensory responses of autism via electroencephalography for Sensory Profile Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2014, ISBN: 9781479956869, (dipetik oleh 3). |
2013 |
Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst Artikel Jurnal BioMedical Engineering Online, 12 (1), 2013, ISSN: 1475925X, (dipetik oleh 42). |
2012 |
Tindak balas awal kanak-kanak autistik dalam terapi interaksi manusia-robot dengan robot humanoid NAO Persidangan 2012, ISBN: 9781467309615, (dipetik oleh 103). |