2019 |
Misman, M F; Samah, A A; Ezudin, F A; Majid, H A; Shah, Z A; Hashim, H; Harun, M F Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2019, ISBN: 9781728130415, (dipetik oleh 0). Abstrak | Pautan | BibTeX | Tag: Gangguan Spektrum Autisme, Gangguan Otak, Pengelasan (maklumat), Ketepatan Pengelasan, Kaedah Pengelasan, Ujian Klinikal, Kemahiran Kognitif, Diagnosis Berbantu Komputer, Pembelajaran Mendalam, Rangkaian Neural Dalam, Penyakit, Belajar, Kaedah Pembelajaran Mesin, Data Saringan, Mesin Vektor Sokongan @ persidangan{Misman201929, tajuk = {Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam}, pengarang = {M F Misman dan A A Samah dan F A Ezudin dan H A Majid dan Z A Shah dan H Hashim dan M F Harun}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079349811&doi=10.1109/AiDAS47888.2019.8970823&rakan kongsi = 40&md5=dd727e950667359680a6dbcc4855422f}, doi = {10.1109/AiDAS47888.2019.8970823}, isbn = {9781728130415}, tahun = {2019}, tarikh = {2019-01-01}, jurnal = {Prosiding - 2019 1st Persidangan Antarabangsa mengenai Kepintaran Buatan dan Sains Data, Gema 2019}, halaman = {29-34}, penerbit = {Institut Jurutera Elektrik dan Elektronik Inc.}, abstrak = {Gangguan Spektrum Autisme (ASD) adalah gangguan otak perkembangan yang menyebabkan defisit dalam linguistik, komunikatif, dan kemahiran kognitif serta kemahiran sosial. Pelbagai aplikasi Pembelajaran Mesin telah digunakan selain daripada ujian klinikal yang ada, yang telah meningkatkan prestasi dalam diagnosis gangguan ini. Dalam kajian ini, kami menggunakan Rangkaian Neural Dalam (DNN) seni bina, yang telah menjadi kaedah popular dalam beberapa tahun kebelakangan ini dan terbukti meningkatkan ketepatan pengelasan. Kajian ini bertujuan untuk menganalisis prestasi model DNN dalam diagnosis ASD dari segi ketepatan klasifikasi dengan menggunakan dua set data saringan ASD dewasa.. Hasilnya kemudian dibandingkan dengan kaedah Pembelajaran Mesin sebelumnya oleh penyelidik lain, iaitu Mesin Vektor Sokongan (SVM). Ketepatan yang dicapai oleh model DNN dalam klasifikasi diagnosis ASD ialah 99.40% pada set data pertama dan dicapai 96.08% pada set data kedua. Sementara itu, model SVM mencapai ketepatan 95.24% dan 95.08% menggunakan data pertama dan kedua, masing-masing. Keputusan menunjukkan bahawa kes ASD boleh dikenal pasti dengan tepat dengan melaksanakan kaedah pengelasan DNN menggunakan data saringan dewasa ASD. © 2019 IEEE.}, nota = {dipetik oleh 0}, kata kunci = {Gangguan Spektrum Autisme, Gangguan Otak, Pengelasan (maklumat), Ketepatan Pengelasan, Kaedah Pengelasan, Ujian Klinikal, Kemahiran Kognitif, Diagnosis Berbantu Komputer, Pembelajaran Mendalam, Rangkaian Neural Dalam, Penyakit, Belajar, Kaedah Pembelajaran Mesin, Data Saringan, Mesin Vektor Sokongan}, pubstate = {diterbitkan}, tppubtype = {persidangan} } Gangguan Spektrum Autisme (ASD) adalah gangguan otak perkembangan yang menyebabkan defisit dalam linguistik, komunikatif, dan kemahiran kognitif serta kemahiran sosial. Pelbagai aplikasi Pembelajaran Mesin telah digunakan selain daripada ujian klinikal yang ada, yang telah meningkatkan prestasi dalam diagnosis gangguan ini. Dalam kajian ini, kami menggunakan Rangkaian Neural Dalam (DNN) seni bina, yang telah menjadi kaedah popular dalam beberapa tahun kebelakangan ini dan terbukti meningkatkan ketepatan pengelasan. Kajian ini bertujuan untuk menganalisis prestasi model DNN dalam diagnosis ASD dari segi ketepatan klasifikasi dengan menggunakan dua set data saringan ASD dewasa.. Hasilnya kemudian dibandingkan dengan kaedah Pembelajaran Mesin sebelumnya oleh penyelidik lain, iaitu Mesin Vektor Sokongan (SVM). Ketepatan yang dicapai oleh model DNN dalam klasifikasi diagnosis ASD ialah 99.40% pada set data pertama dan dicapai 96.08% pada set data kedua. Sementara itu, model SVM mencapai ketepatan 95.24% dan 95.08% menggunakan data pertama dan kedua, masing-masing. Keputusan menunjukkan bahawa kes ASD boleh dikenal pasti dengan tepat dengan melaksanakan kaedah pengelasan DNN menggunakan data saringan dewasa ASD. © 2019 IEEE. |
2013 |
Selvaraj, J; Murugappan, M; Van, K; Yaacob, S Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst Artikel Jurnal BioMedical Engineering Online, 12 (1), 2013, ISSN: 1475925X, (dipetik oleh 42). Abstrak | Pautan | BibTeX | Tag: Remaja, Dewasa, Aged, Artikel, Audio-Visual Stimulus, Autonomous Nervous Systems, Anak-anak, Ketepatan Pengelasan, Computer Based Training, Computer-Assisted, Electrocardiogram Signal, Electrocardiography, Emosi, Perempuan, Fuzzy K-nearest Neighbor, Higher-Order Statistic (HOS), Manusia, Kecacatan Intelektual, Sistem Komputer Interaktif, Metodologi, Pertengahan umur, Nonlinear Dynamics, Nonlinear System, Prosedur, Real Time Systems, Pemprosesan isyarat, Statistik, Dewasa Muda @artikel{Selvaraj2013, tajuk = {Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst}, pengarang = {J Selvaraj and M Murugappan and K Wan and S Yaacob}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879017985&doi=10.1186%2f1475-925X-12-44&rakan kongsi = 40&md5=18c5309ac9f3017f455480f1ff732a30}, doi = {10.1186/1475-925X-12-44}, terbitan = {1475925X}, tahun = {2013}, tarikh = {2013-01-01}, jurnal = {BioMedical Engineering Online}, isi padu = {12}, nombor = {1}, penerbit = {BioMed Central Ltd.}, abstrak = {Latar belakang: Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. Walau bagaimanapun, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals.Methods: Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature 'Hurst' was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers - Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm.Results: Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (hlm < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% and 76.45% for classifying the six emotional states using random and subject independent validation respectively.Conclusions: The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system. © 2013 Selvaraj et al.; licensee BioMed Central Ltd.}, nota = {dipetik oleh 42}, kata kunci = {Remaja, Dewasa, Aged, Artikel, Audio-Visual Stimulus, Autonomous Nervous Systems, Anak-anak, Ketepatan Pengelasan, Computer Based Training, Computer-Assisted, Electrocardiogram Signal, Electrocardiography, Emosi, Perempuan, Fuzzy K-nearest Neighbor, Higher-Order Statistic (HOS), Manusia, Kecacatan Intelektual, Sistem Komputer Interaktif, Metodologi, Pertengahan umur, Nonlinear Dynamics, Nonlinear System, Prosedur, Real Time Systems, Pemprosesan isyarat, Statistik, Dewasa Muda}, pubstate = {diterbitkan}, tppubtype = {artikel} } Latar belakang: Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. Walau bagaimanapun, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals.Methods: Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature 'Hurst' was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers - Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm.Results: Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (hlm < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% dan 76.45% for classifying the six emotional states using random and subject independent validation respectively.Conclusions: The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system. © 2013 Selvaraj et al.; licensee BioMed Central Ltd. |
2012 |
Penjagaan, P R P; Pirapaharan, K; bazar, S A; Ismail, R; Liyanage, D L D A; Senanayake, S S H M U L; Penjagaan, S R H Autisme, EEG and brain electromagnetics research Persidangan 2012, ISBN: 9781467316668, (dipetik oleh 11). Abstrak | Pautan | BibTeX | Tag: Kejuruteraan Bioperubatan, Otak, Brain Regions, Ketepatan Pengelasan, Penyakit, EEG Signals, Electromagnetic Signals, Electromagnetics, Electromagnetism, Domain Kekerapan, International Group, Multilayer Perception Neural Networks, Neuroimaging, Analisis Komponen Utama @ persidangan{Hoole2012541, tajuk = {Autisme, EEG and brain electromagnetics research}, pengarang = {P R P Hoole and K Pirapaharan and S A Basar and R Ismail and D L D A Liyanage and S S H M U L Senanayake and S R H Hoole}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-84876771339&doi=10.1109%2fIECBES.2012.6498036&rakan kongsi = 40&md5=9f9390b30b859a90936c66699c1a5115}, doi = {10.1109/IECBES.2012.6498036}, isbn = {9781467316668}, tahun = {2012}, tarikh = {2012-01-01}, jurnal = {2012 Persidangan IEEE-EMBS mengenai Kejuruteraan dan Sains Bioperubatan, IECBES 2012}, halaman = {541-543}, abstrak = {There has been a significant increase in the incidence of autism. We report the work on autism by our international group, on the growing attention paid to EEG based diagnosis and the interest in tracing EEG changes to brain electromagnetic signals (BEMS), seeking the cause of autism and the brain regions of its origin. The time- and frequency domain and principal component analysis (PCA) of these EEG signals with a Multilayer Perception Neural Network (MLP) identifies an autistic subject and helps improve classification accuracy. We show differences between a working brain and a relaxed brain, especially in the Alpha waves used for diagnosis. © 2012 IEEE.}, nota = {dipetik oleh 11}, kata kunci = {Kejuruteraan Bioperubatan, Otak, Brain Regions, Ketepatan Pengelasan, Penyakit, EEG Signals, Electromagnetic Signals, Electromagnetics, Electromagnetism, Domain Kekerapan, International Group, Multilayer Perception Neural Networks, Neuroimaging, Analisis Komponen Utama}, pubstate = {diterbitkan}, tppubtype = {persidangan} } There has been a significant increase in the incidence of autism. We report the work on autism by our international group, on the growing attention paid to EEG based diagnosis and the interest in tracing EEG changes to brain electromagnetic signals (BEMS), seeking the cause of autism and the brain regions of its origin. The time- and frequency domain and principal component analysis (PCA) of these EEG signals with a Multilayer Perception Neural Network (MLP) identifies an autistic subject and helps improve classification accuracy. We show differences between a working brain and a relaxed brain, especially in the Alpha waves used for diagnosis. © 2012 IEEE. |
Ujianadminnaacuitm2020-05-28T06:49:14+00:00
2019 |
Klasifikasi orang dewasa dengan gangguan spektrum autisme menggunakan rangkaian saraf dalam Persidangan Institut Jurutera Elektrik dan Elektronik Inc., 2019, ISBN: 9781728130415, (dipetik oleh 0). |
2013 |
Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst Artikel Jurnal BioMedical Engineering Online, 12 (1), 2013, ISSN: 1475925X, (dipetik oleh 42). |
2012 |
Autisme, EEG and brain electromagnetics research Persidangan 2012, ISBN: 9781467316668, (dipetik oleh 11). |